A010804
16th powers: a(n) = n^16.
Original entry on oeis.org
0, 1, 65536, 43046721, 4294967296, 152587890625, 2821109907456, 33232930569601, 281474976710656, 1853020188851841, 10000000000000000, 45949729863572161, 184884258895036416, 665416609183179841, 2177953337809371136, 6568408355712890625, 18446744073709551616, 48661191875666868481
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (17, -136, 680, -2380, 6188, -12376, 19448, -24310, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1).
-
[n^16: n in [0..15]]; // Vincenzo Librandi, Jun 19 2011
-
A010804 := n -> n^16; # M. F. Hasler, Jul 03 2025
-
Range[0, 15]^16 (* Alonso del Arte, Feb 16 2015 *)
-
A010804(n):=n^16$
makelist(A010804(n),n,0,10); /* Martin Ettl, Nov 12 2012 */
-
A010804(n)=n^16 \\ Charles R Greathouse IV, Jun 28 2015
-
A010804 = lambda n: n**16 # M. F. Hasler, Jul 03 2025
A036090
Centered cube numbers: (n+1)^12 + n^12.
Original entry on oeis.org
1, 4097, 535537, 17308657, 260917841, 2420922961, 16018069537, 82560763937, 351149013217, 1282429536481, 4138428376721, 12054528824977, 32214185570737, 79991997497777, 186440250265921, 411221314601281
Offset: 0
- B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
A123094
Sum of first n 12th powers.
Original entry on oeis.org
0, 1, 4097, 535538, 17312754, 261453379, 2438235715, 16279522916, 84998999652, 367428536133, 1367428536133, 4505856912854, 13421957361110, 36720042483591, 93413954858887, 223160292749512, 504635269460168, 1087257506689929, 2244088888116105, 4457403807182266
Offset: 0
Sequences of the form Sum_{j=0..n} j^m :
A000217 (m=1),
A000330 (m=2),
A000537 (m=3),
A000538 (m=4),
A000539 (m=5),
A000540 (m=6),
A000541 (m=7),
A000542 (m=8),
A007487 (m=9),
A023002 (m=10),
A123095 (m=11), this sequence (m=12),
A181134 (m=13).
-
[(&+[j^12: j in [0..n]]): j in [0..30]]; // G. C. Greubel, Jul 21 2021
-
[seq(add(i^12, i=1..n), n=0..18)];
-
Table[Sum[k^12, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
Accumulate[Range[0,30]^12] (* Harvey P. Dale, Apr 26 2011 *)
-
A123094_list, m = [0], [479001600, -2634508800, 6187104000, -8083152000, 6411968640, -3162075840, 953029440, -165528000, 14676024, -519156, 4094, -1, 0 , 0]
for _ in range(10**2):
for i in range(13):
m[i+1]+= m[i]
A123094_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
-
[bernoulli_polynomial(n,13)/13 for n in range(1, 30)] # Zerinvary Lajos, May 17 2009
A016788
a(n) = (3*n+1)^12.
Original entry on oeis.org
1, 16777216, 13841287201, 1000000000000, 23298085122481, 281474976710656, 2213314919066161, 12855002631049216, 59604644775390625, 232218265089212416, 787662783788549761, 2386420683693101056, 6582952005840035281, 16777216000000000000, 39959630797262576401
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Cf.
A008456,
A016777,
A016778,
A016779,
A016780,
A016781,
A016782,
A016783,
A016784,
A016785,
A016786,
A016787.
A071235
a(n) = (n^12 + n^6)/2.
Original entry on oeis.org
0, 1, 2080, 266085, 8390656, 122078125, 1088414496, 6920702425, 34359869440, 141215033961, 500000500000, 1569215074141, 4458051717120, 11649044974645, 28346959952416, 64873174640625, 140737496743936, 291311130683665, 578415707719200, 1106657483056021
Offset: 0
- T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
-
List([0..40], n -> (n^12 + n^6)/2); # G. C. Greubel, Nov 15 2018
-
[n^6*(n^2+1)*(n^4-n^2+1)/2: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
-
Table[(n^12 + n^6)/2, {n,0,30}] (* Robert A. Russell, Nov 13 2018 *)
-
vector(40, n, n--; ) \\ G. C. Greubel, Nov 15 2018
-
for n in range(0,20): print(int((n**12 + n**6)/2), end=', ') # Stefano Spezia, Nov 15 2018
-
[n^6*(1 + n^6)/2 for n in range(40)] # G. C. Greubel, Nov 15 2018
A016776
a(n) = (3*n)^12.
Original entry on oeis.org
0, 531441, 2176782336, 282429536481, 8916100448256, 129746337890625, 1156831381426176, 7355827511386641, 36520347436056576, 150094635296999121, 531441000000000000, 1667889514952984961, 4738381338321616896
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
A016800
a(n) = (3*n + 2)^12.
Original entry on oeis.org
4096, 244140625, 68719476736, 3138428376721, 56693912375296, 582622237229761, 4096000000000000, 21914624432020321, 95428956661682176, 353814783205469041, 1152921504606846976, 3379220508056640625, 9065737908494995456, 22563490300366186081, 52654090776777588736
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Cf.
A016789,
A016790,
A016791,
A016792,
A016793,
A016794,
A016795,
A016796,
A016797,
A016798,
A016799.
A016848
a(n) = (4*n+3)^12.
Original entry on oeis.org
531441, 13841287201, 3138428376721, 129746337890625, 2213314919066161, 21914624432020321, 150094635296999121, 787662783788549761, 3379220508056640625, 12381557655576425121, 39959630797262576401
Offset: 0
- David A. Corneth, Table of n, a(n) for n = 0..9999
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Cf.
A004767,
A016838,
A016839,
A016840,
A016841,
A016842,
A016843,
A016844,
A016845,
A016846,
A016847.
A016920
a(n) = (6*n)^12.
Original entry on oeis.org
0, 2176782336, 8916100448256, 1156831381426176, 36520347436056576, 531441000000000000, 4738381338321616896, 30129469486639681536, 149587343098087735296, 614787626176508399616, 2176782336000000000000
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
-
[(6*n)^12: n in [0..25]]; // Vincenzo Librandi, May 03 2011
-
(6*Range[0,20])^12 (* or *) LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{0,2176782336,8916100448256,1156831381426176,36520347436056576,531441000000000000,4738381338321616896,30129469486639681536,149587343098087735296,614787626176508399616,2176782336000000000000,6831675453247426400256,19408409961765342806016},20] (* Harvey P. Dale, Mar 17 2019 *)
A016944
a(n) = (6*n + 2)^12.
Original entry on oeis.org
4096, 68719476736, 56693912375296, 4096000000000000, 95428956661682176, 1152921504606846976, 9065737908494995456, 52654090776777588736, 244140625000000000000, 951166013805414055936, 3226266762397899821056, 9774779120406941925376, 26963771415920784510976
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Cf.
A016788,
A016933,
A016934,
A016935,
A016936,
A016937,
A016938,
A016939,
A016940,
A016941,
A016942,
A016943.
-
[(6*n+2)^12: n in [0..20]]; // Vincenzo Librandi, May 05 2011
-
(6*Range[0,20]+2)^12 (* or *) LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{4096,68719476736,56693912375296,4096000000000000,95428956661682176,1152921504606846976,9065737908494995456,52654090776777588736,244140625000000000000,951166013805414055936,3226266762397899821056,9774779120406941925376,26963771415920784510976},20] (* Harvey P. Dale, Aug 03 2021 *)
Comments