cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 220 results. Next

A251683 Irregular triangular array: T(n,k) is the number of ordered factorizations of n with exactly k factors, n >= 1, 1 <= k <= A086436(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 4, 3, 1, 1, 4, 3, 1, 2, 1, 2, 1, 1, 6, 9, 4, 1, 1, 1, 2, 1, 2, 1, 1, 4, 3, 1, 1, 6, 6, 1, 1, 4, 6, 4, 1, 1, 2, 1, 2, 1, 2, 1, 7, 12, 6, 1, 1, 2, 1, 2, 1, 6, 9, 4
Offset: 1

Views

Author

Geoffrey Critzer, Dec 06 2014

Keywords

Comments

Row sums = A074206.
Row lengths give A086436.
T(n,2) = A070824(n).
T(n,3) = A200221(n).
Sum_{k>=1} k*T(n,k) = A254577.
For all n > 1, Sum_{k=1..A086436(n)} (-1)^k*T(n,k) = A008683(n). - Geoffrey Critzer, May 25 2018
From Gus Wiseman, Aug 21 2020: (Start)
Also the number of strict length k + 1 chains of divisors from n to 1. For example, row n = 24 counts the following chains:
24/1 24/2/1 24/4/2/1 24/8/4/2/1
24/3/1 24/6/2/1 24/12/4/2/1
24/4/1 24/6/3/1 24/12/6/2/1
24/6/1 24/8/2/1 24/12/6/3/1
24/8/1 24/8/4/1
24/12/1 24/12/2/1
24/12/3/1
24/12/4/1
24/12/6/1
(End)

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1;
  1, 1;
  1;
  1, 2;
  1;
  1, 2, 1;
  1, 1;
  1, 2;
  1;
  1, 4, 3;
  1;
  1, 2;
  1, 2;
  ...
There are 8 ordered factorizations of the integer 12: 12, 6*2, 4*3, 3*4, 2*6, 3*2*2, 2*3*2, 2*2*3.  So T(12,1)=1, T(12,2)=4, and T(12,3)=3.
		

Crossrefs

A008480 gives rows ends.
A086436 gives row lengths.
A124433 is the same except for signs and zeros.
A334996 is the same except for zeros.
A337107 is the restriction to factorial numbers (but with zeros).
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A074206 counts strict chains of divisors from n to 1.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict nonempty chains of divisors of n.
A337071 counts strict chains of divisors starting with n!.
A337256 counts strict chains of divisors of n.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; expand(x*(1+
          add(b(n/d), d=divisors(n) minus {1, n})))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=1..100);  # Alois P. Heinz, Dec 07 2014
  • Mathematica
    f[1] = {{}};
    f[n_] := f[n] =
      Level[Table[
        Map[Prepend[#, d] &, f[n/d]], {d, Rest[Divisors[n]]}], {2}];
    Prepend[Map[Select[#, # > 0 &] &,
      Drop[Transpose[
        Table[Map[Count[#, k] &,
          Map[Length, Table[f[n], {n, 1, 40}], {2}]], {k, 1, 10}]],
       1]],{1}] // Grid
    (* Second program: *)
    b[n_] := b[n] = x(1+Sum[b[n/d], {d, Divisors[n]~Complement~{1, n}}]);
    T[n_] := CoefficientList[b[n]/x, x];
    Array[T, 100] // Flatten (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)

Formula

Dirichlet g.f.: 1/(1 - y*(zeta(x)-1)).

A318762 Number of permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 6, 6, 4, 1, 12, 1, 5, 10, 24, 1, 30, 1, 20, 15, 6, 1, 60, 20, 7, 90, 30, 1, 60, 1, 120, 21, 8, 35, 180, 1, 9, 28, 120, 1, 105, 1, 42, 210, 10, 1, 360, 70, 140, 36, 56, 1, 630, 56, 210, 45, 11, 1, 420, 1, 12, 420, 720, 84, 168, 1, 72, 55
Offset: 1

Views

Author

Gus Wiseman, Sep 03 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(12) = 12 permutations are (1123), (1132), (1213), (1231), (1312), (1321), (2113), (2131), (2311), (3112), (3121), (3211).
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> add(i, i=l)!/mul(i!, i=l))(map(i->
           numtheory[pi](i[1])$i[2], ifactors(n)[2])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Sep 03 2018
  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Total[primeMS[n]]!/Times@@Factorial/@primeMS[n],{n,100}]
  • PARI
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i, 2], j, primepi(f[i, 1]))))}
    a(n)={if(n==1, 1, my(s=sig(n)); vecsum(s)!/prod(i=1, #s, s[i]!))}  \\ Andrew Howroyd, Dec 17 2018

Formula

If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) = (Sum x_i * y_i)! / Product (x_i!)^y_i.
a(n) = A008480(A181821(n)).
a(n) = A112624(n) * A124794(n). - Max Alekseyev, Oct 15 2023
Sum_{m in row n of A215366} a(m) = A005651(n).
Sum_{m in row n of A215366} a(m) * A008480(m) = A000670(n).
Sum_{m in row n of A215366} a(m) * A008480(m) / A001222(m)! = A000110(n).

A325617 Multinomial coefficient of the prime signature of n!.

Original entry on oeis.org

1, 1, 1, 2, 4, 20, 105, 840, 3960, 51480, 675675, 10810800, 139675536, 2793510720, 58663725120, 1799020903680, 26985313555200, 782574093100800, 25992639520848000, 857757104187984000, 30021498646579440000, 1563341744336692320000, 64179292662243158400000
Offset: 0

Views

Author

Gus Wiseman, May 12 2019

Keywords

Comments

Number of permutations of the multiset of prime factors of n!.

Examples

			The a(5) = 20 permutations of {2,2,2,3,5}:
  (22235)  (32225)  (52223)
  (22253)  (32252)  (52232)
  (22325)  (32522)  (52322)
  (22352)  (35222)  (53222)
  (22523)
  (22532)
  (23225)
  (23252)
  (23522)
  (25223)
  (25232)
  (25322)
		

Crossrefs

Programs

  • Mathematica
    Table[Multinomial@@Last/@FactorInteger[n!],{n,0,15}]

Formula

a(n) = A318762(A181819(n!)).

A382879 Positions of 0 in A382857 (permutations of prime indices with equal run-lengths).

Original entry on oeis.org

24, 40, 48, 54, 56, 80, 88, 96, 104, 112, 135, 136, 152, 160, 162, 176, 184, 189, 192, 208, 224, 232, 240, 248, 250, 272, 288, 296, 297, 304, 320, 328, 336, 344, 351, 352, 368, 375, 376, 384, 405, 416, 424, 448, 459, 464, 472, 480, 486, 488, 496, 513, 528, 536
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
   24: {1,1,1,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   80: {1,1,1,1,3}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
  104: {1,1,1,6}
  112: {1,1,1,1,4}
  135: {2,2,2,3}
  136: {1,1,1,7}
  152: {1,1,1,8}
  160: {1,1,1,1,1,3}
		

Crossrefs

For distinct instead of equal the complement is A351294, counted by A239455.
For distinct instead of equal we have A351295, counted by A351293.
For run-sums instead of run-lengths we have A383100, zeros of A382877, distinct A382876.
Positions of 0 in A382857 (firsts A382878), by signature A382858 (distinct A382773).
For prime signature instead of prime indices we have A382914.
Partitions of this type are counted by A382915.
The complement is counted by A383013.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798.
A297770 counts distinct runs in binary expansion.
A164707 lists numbers whose binary form has equal runs of ones, distinct A328592.
A304442 counts partitions with equal run-sums, ranks A353833.
A329739 counts compositions with distinct run-lengths, ranks A351290.
A353744 ranks compositions with equal run-lengths, distinct A351596 (complement A351291).

Programs

  • Mathematica
    Select[Range[100], Select[Permutations[Join@@ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]=={}&]

A334996 Irregular triangle read by rows: T(n, m) is the number of ways to distribute Omega(n) objects into precisely m distinct boxes, with no box empty (Omega(n) >= m).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 4, 3, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 3, 1, 0, 1, 0, 1, 4, 3, 0, 1, 0, 1, 4, 3, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 6, 9, 4, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 4, 3, 0, 1, 0, 1, 6, 6
Offset: 1

Views

Author

Stefano Spezia, May 19 2020

Keywords

Comments

n is the specification number for a set of Omega(n) objects (see Theorem 3 in Beekman's article).
The specification number of a multiset is also called its Heinz number. - Gus Wiseman, Aug 25 2020
From Gus Wiseman, Aug 25 2020: (Start)
For n > 1, T(n,k) is also the number of ordered factorizations of n into k factors > 1. For example, row n = 24 counts the following ordered factorizations (the first column is empty):
24 3*8 2*2*6 2*2*2*3
4*6 2*3*4 2*2*3*2
6*4 2*4*3 2*3*2*2
8*3 2*6*2 3*2*2*2
12*2 3*2*4
2*12 3*4*2
4*2*3
4*3*2
6*2*2
For n > 1, T(n,k) is also the number of strict length-k chains of divisors from n to 1. For example, row n = 36 counts the following chains (the first column is empty):
36/1 36/2/1 36/4/2/1 36/12/4/2/1
36/3/1 36/6/2/1 36/12/6/2/1
36/4/1 36/6/3/1 36/12/6/3/1
36/6/1 36/9/3/1 36/18/6/2/1
36/9/1 36/12/2/1 36/18/6/3/1
36/12/1 36/12/3/1 36/18/9/3/1
36/18/1 36/12/4/1
36/12/6/1
36/18/2/1
36/18/3/1
36/18/6/1
36/18/9/1
(End)

Examples

			The triangle T(n, m) begins
  n\m| 0     1     2     3     4
  ---+--------------------------
   1 | 0
   2 | 0     1
   3 | 0     1
   4 | 0     1     1
   5 | 0     1
   6 | 0     1     2
   7 | 0     1
   8 | 0     1     2     1
   9 | 0     1     1
  10 | 0     1     2
  11 | 0     1
  12 | 0     1     4     3
  13 | 0     1
  14 | 0     1     2
  15 | 0     1     2
  16 | 0     1     3     3     1
  ...
From _Gus Wiseman_, Aug 25 2020: (Start)
Row n = 36 counts the following distributions of {1,1,2,2} (the first column is empty):
  {1122}  {1}{122}  {1}{1}{22}  {1}{1}{2}{2}
          {11}{22}  {1}{12}{2}  {1}{2}{1}{2}
          {112}{2}  {11}{2}{2}  {1}{2}{2}{1}
          {12}{12}  {1}{2}{12}  {2}{1}{1}{2}
          {122}{1}  {12}{1}{2}  {2}{1}{2}{1}
          {2}{112}  {1}{22}{1}  {2}{2}{1}{1}
          {22}{11}  {12}{2}{1}
                    {2}{1}{12}
                    {2}{11}{2}
                    {2}{12}{1}
                    {2}{2}{11}
                    {22}{1}{1}
(End)
		

References

  • Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.

Crossrefs

Cf. A000007 (1st column), A000012 (2nd column), A001222 (Omega function), A002033 (row sums shifted left), A007318.
A008480 gives rows ends.
A073093 gives row lengths.
A074206 gives row sums.
A112798 constructs the multiset with each specification number.
A124433 is a signed version.
A251683 is the version with zeros removed.
A334997 is the non-strict version.
A337107 is the restriction to factorial numbers.
A001055 counts factorizations.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A337105 counts strict chains of divisors from n! to 1.

Programs

  • Mathematica
    tau[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; (* A334997 *)
    T[n_,m_]:=Sum[(-1)^k*Binomial[m,k]*tau[n,m-k-1],{k,0,m-1}]; Table[T[n,m],{n,1,30},{m,0,PrimeOmega[n]}]//Flatten
    (* second program *)
    chc[n_]:=If[n==1,{{}},Prepend[Join@@Table[Prepend[#,n]&/@chc[d],{d,DeleteCases[Divisors[n],1|n]}],{n}]]; (* change {{}} to {} if a(1) = 0 *)
    Table[Length[Select[chc[n],Length[#]==k&]],{n,30},{k,0,PrimeOmega[n]}] (* Gus Wiseman, Aug 25 2020 *)
  • PARI
    TT(n, k) = if (k==0, 1, sumdiv(n, d, TT(d, k-1))); \\ A334997
    T(n, m) = sum(k=0, m-1, (-1)^k*binomial(m, k)*TT(n, m-k-1));
    tabf(nn) = {for (n=1, nn, print(vector(bigomega(n)+1, k, T(n, k-1))););} \\ Michel Marcus, May 20 2020

Formula

T(n, m) = Sum_{k=0..m-1} (-1)^k*binomial(m,k)*tau_{m-k-1}(n), where tau_s(r) = A334997(r, s) (see Theorem 3, Lemma 1 and Lemma 2 in Beekman's article).
Conjecture: Sum_{m=0..Omega(n)} T(n, m) = A002033(n-1) for n > 1.
The above conjecture is true since T(n, m) is also the number of ordered factorizations of n into m factors (see Comments) and A002033(n-1) is the number of ordered factorizations of n. - Stefano Spezia, Aug 21 2025

A321912 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in e(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and e is elementary symmetric functions.

Original entry on oeis.org

1, 0, 1, 1, 2, 0, 0, 1, 0, 1, 3, 1, 3, 6, 0, 0, 0, 0, 1, 0, 1, 0, 2, 6, 0, 0, 0, 1, 4, 0, 2, 1, 5, 12, 1, 6, 4, 12, 24, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 5, 0, 0, 0, 1, 0, 3, 10, 0, 0, 1, 5, 2, 12, 30, 0, 0, 0, 2, 1, 7, 20, 0, 1, 3, 12, 7, 27, 60, 1, 5
Offset: 1

Views

Author

Gus Wiseman, Nov 22 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also the coefficient of f(v) in h(u), where f is forgotten symmetric functions and h is homogeneous symmetric functions.

Examples

			Tetrangle begins (zeroes not shown):
  (1):  1
.
  (2):      1
  (11):  1  2
.
  (3):          1
  (21):      1  3
  (111):  1  3  6
.
  (4):                 1
  (22):       1     2  6
  (31):             1  4
  (211):      2  1  5 12
  (1111):  1  6  4 12 24
.
  (5):                        1
  (41):                    1  5
  (32):              1     3 10
  (221):          1  5  2 12 30
  (311):             2  1  7 20
  (2111):      1  3 12  7 27 60
  (11111):  1  5 10 30 20 60 20
For example, row 14 gives: e(32) = m(221) + 3m(2111) + 10m(11111).
		

Crossrefs

A333175 If n = Product (p_j^k_j) then a(n) = Sum (a(n/p_j^k_j)), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 6, 1, 2, 2, 6, 1, 2, 1, 2, 2, 2, 2, 6, 1, 2, 1, 2, 1, 6, 2, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 11 2020

Keywords

Comments

Number of ordered prime factorizations of radical of n.
Number of permutations of the prime indices of n (counting multiplicity) avoiding the patterns (1,2,1) and (2,1,2). These are permutations with all equal parts contiguous. Depends only on sorted prime signature (A118914). - Gus Wiseman, Jun 27 2020

Examples

			From _Gus Wiseman_, Jun 27 2020 (Start)
The a(n) permutations of prime indices for n = 2, 12, 60:
  (1)  (112)  (1123)
       (211)  (1132)
              (2113)
              (2311)
              (3112)
              (3211)
(End)
		

Crossrefs

Dominates A335451.
Permutations of prime indices are A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
(1,2,1)-avoiding permutations of prime indices are A335449.
(2,1,2)-avoiding permutations of prime indices are A335450.
(1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.

Programs

  • Maple
    f:= n -> nops(numtheory:-factorset(n))!:
    map(f, [$1..100]); # Robert Israel, Mar 12 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Plus @@ (a[n/#[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}]
    a[1] = 1; a[n_] := a[n] = Sum[If[GCD[n/d, d] == 1 && d < n, Boole[PrimePowerQ[n/d]] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}]
    Table[PrimeNu[n]!, {n, 1, 100}]

Formula

a(1) = 1; a(n) = Sum_{d|n, d < n, gcd(d, n/d) = 1} A069513(n/d) * a(d).
a(n) = A000142(A001221(n)).

A333221 Irregular triangle read by rows where row n lists the set of STC-numbers of permutations of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 13, 14, 32, 17, 24, 18, 20, 15, 64, 21, 22, 26, 128, 19, 25, 28, 34, 40, 33, 48, 256, 23, 27, 29, 30, 36, 65, 96, 42, 35, 49, 56, 512, 37, 38, 41, 44, 50, 52, 1024, 31, 66, 80, 129, 192, 68, 72, 43, 45, 46, 53, 54, 58
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2020

Keywords

Comments

This is a permutation of the nonnegative integers.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. We define the composition with STC-number k to be the k-th composition in standard order.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Reading by columns gives:
  0  1  2  3  4  5  8  7  10  9   16  11  32  17  18  15  64  21  128  19
                 6            12      13      24  20          22       25
                                      14                      26       28
  34  33  256  23  36  65  42  35  512  37  1024  31  66  129  68  43
  40  48       27      96      49       38            80  192  72  45
               29              56       41                         46
               30                       44                         53
                                        50                         54
                                        52                         58
The sequence of terms together with the corresponding compositions begins:
     0: ()           24: (1,4)          27: (1,2,1,1)
     1: (1)          18: (3,2)          29: (1,1,2,1)
     2: (2)          20: (2,3)          30: (1,1,1,2)
     3: (1,1)        15: (1,1,1,1)      36: (3,3)
     4: (3)          64: (7)            65: (6,1)
     5: (2,1)        21: (2,2,1)        96: (1,6)
     6: (1,2)        22: (2,1,2)        42: (2,2,2)
     8: (4)          26: (1,2,2)        35: (4,1,1)
     7: (1,1,1)     128: (8)            49: (1,4,1)
    10: (2,2)        19: (3,1,1)        56: (1,1,4)
     9: (3,1)        25: (1,3,1)       512: (10)
    12: (1,3)        28: (1,1,3)        37: (3,2,1)
    16: (5)          34: (4,2)          38: (3,1,2)
    11: (2,1,1)      40: (2,4)          41: (2,3,1)
    13: (1,2,1)      33: (5,1)          44: (2,1,3)
    14: (1,1,2)      48: (1,5)          50: (1,3,2)
    32: (6)         256: (9)            52: (1,2,3)
    17: (4,1)        23: (2,1,1,1)    1024: (11)
		

Crossrefs

Row lengths are A008480.
Column k = 1 is A233249.
Column k = -1 is A333220.
A related triangle for partitions is A215366.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fbi[q_]:=If[q=={},0,Total[2^q]/2];
    Table[Sort[fbi/@Accumulate/@Permutations[primeMS[n]]],{n,30}]

A352486 Heinz numbers of non-self-conjugate integer partitions.

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. The sequence lists all Heinz numbers of partitions whose Heinz number is different from that of their conjugate.

Examples

			The terms together with their prime indices begin:
   3: (2)
   4: (1,1)
   5: (3)
   7: (4)
   8: (1,1,1)
  10: (3,1)
  11: (5)
  12: (2,1,1)
  13: (6)
  14: (4,1)
  15: (3,2)
  16: (1,1,1,1)
  17: (7)
  18: (2,2,1)
For example, the self-conjugate partition (4,3,3,1) has Heinz number 350, so 350 is not in the sequence.
		

Crossrefs

The complement is A088902, counted by A000700.
These partitions are counted by A330644.
These are the positions of nonzero terms in A352491.
A000041 counts integer partitions, strict A000009.
A098825 counts permutations by unfixed points.
A238349 counts compositions by fixed points, rank statistic A352512.
A325039 counts partitions w/ same product as conjugate, ranked by A325040.
A352523 counts compositions by unfixed points, rank statistic A352513.
Heinz number (rank) and partition:
- A003963 = product of partition, conjugate A329382
- A008480 = number of permutations of partition, conjugate A321648.
- A056239 = sum of partition
- A122111 = rank of conjugate partition
- A296150 = parts of partition, reverse A112798, conjugate A321649
- A352487 = less than conjugate, counted by A000701
- A352488 = greater than or equal to conjugate, counted by A046682
- A352489 = less than or equal to conjugate, counted by A046682
- A352490 = greater than conjugate, counted by A000701

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    conj[y_]:=If[Length[y0]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Select[Range[100],#!=Times@@Prime/@conj[primeMS[#]]&]

Formula

a(n) != A122111(a(n)).

A096827 Number of antichains in divisor lattice D(n).

Original entry on oeis.org

2, 3, 3, 4, 3, 6, 3, 5, 4, 6, 3, 10, 3, 6, 6, 6, 3, 10, 3, 10, 6, 6, 3, 15, 4, 6, 5, 10, 3, 20, 3, 7, 6, 6, 6, 20, 3, 6, 6, 15, 3, 20, 3, 10, 10, 6, 3, 21, 4, 10, 6, 10, 3, 15, 6, 15, 6, 6, 3, 50, 3, 6, 10, 8, 6, 20, 3, 10, 6, 20, 3, 35, 3, 6, 10, 10, 6, 20, 3, 21, 6, 6, 3, 50, 6, 6, 6, 15, 3, 50, 6
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 17 2004

Keywords

Comments

The divisor lattice D(n) is the lattice of the divisors of the natural number n.
The empty set is counted as an antichain in D(n).
a(n) = gamma(n+1) where gamma is degree of cardinal completeness of Łukasiewicz n-valued logic. - Artur Jasinski, Mar 01 2010

References

  • Alexander S. Karpenko, Lukasiewicz's Logics and Prime Numbers, Luniver Press, Beckington, 2006. See Table I p. 113.

Crossrefs

Programs

  • Mathematica
    nn=200;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Divisors[n],Divisible]],{n,nn}] (* Gus Wiseman, Aug 24 2018 *)

Formula

a(n) = A285573(n) + 1. - Gus Wiseman, Aug 24 2018

Extensions

More terms from John W. Layman, Aug 20 2004
Previous Showing 31-40 of 220 results. Next