cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A045757 10-factorial numbers.

Original entry on oeis.org

1, 11, 231, 7161, 293601, 14973651, 913392711, 64850882481, 5252921480961, 478015854767451, 48279601331512551, 5359035747797893161, 648443325483545072481, 84946075638344404495011, 11977396665006561033796551, 1808586896415990716103279201, 291182490322974505292627951361
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> Product([0..n-1], j-> 10*j+1) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [(&*[10*j+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    G(x):=-1+(1-10*x)^(-1/10): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=1..14); # Zerinvary Lajos, Apr 03 2009
    seq(mul(10*j+1, j = 0..n-1), n = 1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    FoldList[Times,10*Range[0,20]+1] (* Harvey P. Dale, Dec 02 2016 *)
  • PARI
    vector(21, n, prod(j=0,n-1, 10*j+1) ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [product( (10*j+1) for j in (0..n-1)) for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n) = Pochhammer(1/10,n)*10^n.
a(n+1) = (10*n+1)(!^10) = Product_{k=0..n} (10*k+1), n >= 0.
E.g.f.: -1 + (1-10*x)^(-1/10).
Sum_{n>=1} 1/a(n) = (e/10^9)^(1/10)*(Gamma(1/10) - Gamma(1/10, 1/10)). - Amiram Eldar, Dec 22 2022

A034689 a(n) = n-th sextic factorial number divided by 2.

Original entry on oeis.org

1, 8, 112, 2240, 58240, 1863680, 70819840, 3116072960, 155803648000, 8725004288000, 540950265856000, 36784618078208000, 2722061737787392000, 217764939022991360000, 18727784755977256960000, 1722956197549907640320000, 168849707359890948751360000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (6*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
    
  • Mathematica
    Table[6^n*Pochhammer[1/3, n]/2, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
  • SageMath
    [6^n*rising_factorial(1/3,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 21 2022

Formula

2*a(n) = (6*n-4)(!^6) = Product_{j=1..n} (6*j-4) = 2^n*A007559(n), A007559(n) = (3*n-2)(!^3) = Product_{j=1..n} (3*j-2).
E.g.f.: (-1 + (1-6*x)^(-1/3))/2.
D-finite with recurrence: a(n) = 2*(3*n-2)*a(n-1). - R. J. Mathar, Feb 24 2020
a(n) = 3*6^(n-1)*Pochhammer(n, 1/3). - G. C. Greubel, Oct 21 2022
From Amiram Eldar, Dec 18 2022: (Start)
a(n) = A047657(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/6^4)^(1/6)*(Gamma(1/3, 1/6) - Gamma(1/3)). (End)

A111146 Triangle T(n,k), read by rows, given by [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 5, 8, 0, 0, 6, 15, 17, 16, 0, 0, 24, 62, 68, 49, 32, 0, 0, 120, 322, 359, 243, 129, 64, 0, 0, 720, 2004, 2308, 1553, 756, 321, 128, 0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256, 0, 0, 40320, 119664
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2005

Keywords

Comments

Let R(m,n,k), 0<=k<=n, the Riordan array (1, x*g(x)) where g(x) is g.f. of the m-fold factorials . Then Sum_{k, 0<=k<=n} = R(m,n,k) = Sum_{k, 0<=k<=n} T(n,k)*m^(n-k).
For m = -1, R(-1,n,k) is A026729(n,k).
For m = 0, R(0,n,k) is A097805(n,k).
For m = 1, R(1,n,k) is A084938(n,k).
For m = 2, R(2,n,k) is A111106(n,k).

Examples

			Triangle begins:
.1;
.0, 1;
.0, 0, 2;
.0, 0, 1, 4;
.0, 0, 2, 5, 8;
.0, 0, 6, 15, 17, 16;
.0, 0, 24, 62, 68, 49, 32;
.0, 0, 120, 322, 359, 243, 129, 64;
.0, 0, 720, 2004, 2308, 1553, 756, 321, 128;
.0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256;
.0, 0, 40320, 119664, 148232, 105048, 49840, 18066, 5756, 1793, 512;
....................................................................
At y=2: Sum_{k=0..n} 2^k*T(n,k) = A113327(n) where (1 + 2*x + 8*x^2 + 36*x^3 +...+ A113327(n)*x^n +..) = 1/(1 - 2/1!*x*(1! + 2!*x + 3!*x^2 + 4!*x^3 +..) ).
At y=3: Sum_{k=0..n} 3^k*T(n,k) = A113328(n) where (1 + 3*x + 18*x^2 + 117*x^3 +...+ A113328(n)*x^n +..) = 1/(1 - 3/2!*x*(2! + 3!*x + 4!*x^2 + 5!*x^3 +..) ).
At y=4: Sum_{k=0..n} 4^k*T(n,k) = A113329(n) where (1 + 4*x + 32*x^2 + 272*x^3 +...+ A113329(n)*x^n +..) = 1/(1 - 4/3!*x*(3! + 4!*x + 5!*x^2 + 6!*x^3 +..) ).
		

Crossrefs

Cf. m-fold factorials : A000142, A001147, A007559, A007696, A008548, A008542.
Cf. A113326, A113327 (y=2), A113328 (y=3), A113329 (y=4), A113330 (y=5), A113331 (y=6).

Programs

  • Mathematica
    T[n_, k_] := Module[{x = X + X*O[X]^n, y = Y + Y*O[Y]^k}, A = 1/(1 - x*y*Sum[x^j*Product[y + i, {i, 0, j - 1}], {j, 0, n}]); Coefficient[ Coefficient[A, X, n], Y, k]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019, from PARI *)
  • PARI
    {T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); A=1/(1-x*y*sum(j=0,n,x^j*prod(i=0,j-1,y+i))); return(polcoeff(polcoeff(A,n,X),k,Y))} (Hanna)

Formula

Sum_{k, 0<=k<=n} (-1)^(n-k)*T(n, k) = A000045(n+1), Fibonacci numbers.
Sum_{k, 0<=k<=n} T(n, k) = A051295(n).
Sum_{k, 0<=k<=n} 2^(n-k)*T(n, k) = A112934(n).
T(0, 0) = 1, T(n, n) = 2^(n-1).
G.f.: A(x, y) = 1/(1 - x*y*Sum_{j>=0} (y-1+j)!/(y-1)!*x^j ). - Paul D. Hanna, Oct 26 2005

A114799 Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Comments

Many of the terms yield multifactorial primes a(n) + 1, e.g.: a(2) + 1 = 3, a(4) + 1 = 5, a(6) + 1 = 7, a(9) + 1 = 19, a(10) + 1 = 31, a(12) + 1 = 61, a(13) + 1 = 79, a(24) + 1 = 12241, a(25) + 1 = 19801, a(26) + 1 = 29641, a(29) + 1 = 76561, a(31) + 1 = 379441, a(35) + 1 = 2016841, a(36) + 1 = 2756161, ...
Equivalently, product of all positive integers <= n congruent to n (mod 7). - M. F. Hasler, Feb 23 2018

Examples

			a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-7);
        fi;
      end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
  • Magma
    b:= func< n | (n lt 8) select n else n*Self(n-7) >;
    [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    A114799 := proc(n)
        option remember;
        if n < 1 then
            1;
        else
            n*procname(n-7) ;
        end if;
    end proc:
    seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014
    A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
  • Mathematica
    a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-7)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
    

Formula

a(n) = 1 for n <= 1, else a(n) = n*a(n-7).
Sum_{n>=0} 1/a(n) = A288094. - Amiram Eldar, Nov 10 2020

Extensions

Edited by M. F. Hasler, Feb 23 2018

A346985 Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/6).

Original entry on oeis.org

1, 1, 8, 113, 2325, 62896, 2109143, 84403033, 3924963750, 207976793991, 12369246804853, 815880360117978, 59107920881218525, 4665585774576259261, 398534278371999103888, 36627974592437584634573, 3603954453161886215458025, 377983931878997401821759456, 42095013846928585982896180123
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 09 2021

Keywords

Comments

Stirling transform of A008542.
In general, for k >= 1, if e.g.f. = 1 / (k + 1 - k*exp(x))^(1/k), then a(n) ~ n! / (Gamma(1/k) * (k+1)^(1/k) * n^(1 - 1/k) * log(1 + 1/k)^(n + 1/k)). - Vaclav Kotesovec, Aug 14 2021

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1, (6*n-5)*g(n-1)) end:
    b:= proc(n, m) option remember;
         `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 09 2021
  • Mathematica
    nmax = 18; CoefficientList[Series[1/(7 - 6 Exp[x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]
  • Maxima
    a[n]:=if n=0 then 1 else (1/n)*sum(binomial(n,k)*(n+5*k)*a[k],k,0,n-1);
    makelist(a[n],n,0,50); /* Tani Akinari, Aug 22 2023 */

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A008542(k).
a(n) ~ n! / (Gamma(1/6) * 7^(1/6) * n^(5/6) * log(7/6)^(n + 1/6)). - Vaclav Kotesovec, Aug 14 2021
For n > 0, a(n) = (1/n)*Sum_{k=0..n-1} binomial(n,k)*(n+5*k)*a(k). - Tani Akinari, Aug 22 2023
O.g.f. (conjectural): 1/(1 - x/(1 - 7*x/(1 - 7*x/(1 - 14*x/(1 - 13*x/(1 - 21*x/(1 - ... - (6*n-5)*x/(1 - 7*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type (S-fraction). - Peter Bala, Aug 25 2023
a(0) = 1; a(n) = a(n-1) - 7*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 17 2023

A034724 a(n) = n-th sextic factorial number divided by 4.

Original entry on oeis.org

1, 10, 160, 3520, 98560, 3351040, 134041600, 6165913600, 320627507200, 18596395417600, 1190169306726400, 83311851470848000, 6331700711784448000, 519199458366324736000, 45689552336236576768000, 4294817919606238216192000, 429481791960623821619200000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> Product([1..n], j-> 6*j-2)/4 ); # G. C. Greubel, Nov 11 2019
  • Magma
    [(&*[6*j-2: j in [1..n]])/4: n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( mul(6*j-2, j=1..n)/4, n=1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    With[{nn=20},CoefficientList[Series[((1-6x)^(-2/3)-1)/4,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 02 2017 *)
    Table[6^n*Pochhammer[2/3, n]/4, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    vector(20, n, prod(j=1,n, 6*j-2)/4 ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [product( (6*j-2) for j in (1..n))/4 for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

4*a(n) = (6*n-2)(!^6) = Product_{j=1..n} (6*j-2).
a(n) = 2^(n+1)*A034000(n), 2*A034000(n) = (3*n-1)(!^3).
E.g.f.: (-1 + (1-6*x)^(-2/3))/4.
D-finite with recurrence: a(n) +2*(-3*n+1)*a(n-1)=0. - R. J. Mathar, Jan 28 2020
Sum_{n>=1} 1/a(n) = 4*(e/6^2)^(1/6)*(Gamma(2/3) - Gamma(2/3, 1/6)). - Amiram Eldar, Dec 18 2022
a(n) ~ sqrt(Pi) * 2^(n-3/2) * (3/e)^n * n^(n+1/6) / Gamma(2/3). - Amiram Eldar, Sep 01 2025

A034787 a(n) = n-th sextic factorial number divided by 5.

Original entry on oeis.org

1, 11, 187, 4301, 124729, 4365515, 178986115, 8412347405, 445854412465, 26305410335435, 1709851671803275, 121399468698032525, 9347759089748504425, 775864004449125867275, 69051896395972202187475, 6559930157617359207810125, 662552945919353279988822625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> Product([1..n], j-> 6*j-1)/5 ); # G. C. Greubel, Nov 11 2019
  • Magma
    [(&*[6*j-1: j in [1..n]])/5: n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( mul(6*j-1, j=1..n)/5, n=1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[6^n*Pochhammer[5/6, n]/5, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
    With[{nn=20},CoefficientList[Series[(-1+(1-6x)^(-5/6))/5,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 21 2024 *)
  • PARI
    vector(20, n, prod(j=1,n, 6*j-1)/5 ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [product( (6*j-1) for j in (1..n))/5 for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

5*a(n) = (6*n-1)(!^6) = Product_{j=1..n} (6*j-1) = (6*n)!/(3^(2*n)*2^(2*n+1)*(2*n)!*A008542(n)*A007559(n)*A034000(n)).
E.g.f.: (-1 + (1-6*x)^(-5/6))/5.
a(n+1) ~ sqrt(2*Pi) * 6/(5*Gamma(5/6)) * n^(4/3) * (6*n/e)^n * (1 + (61/72)/n + ...). - Joe Keane (jgk(AT)jgk.org), Nov 24 2001
D-finite with recurrence: a(n) +(-6*n+1)*a(n-1)=0. - R. J. Mathar, Feb 24 2020
Sum_{n>=1} 1/a(n) = 5*(e/6)^(1/6)*(Gamma(5/6) - Gamma(5/6, 1/6)). - Amiram Eldar, Dec 18 2022

A034723 a(n) is the n-th sextic factorial number divided by 3.

Original entry on oeis.org

1, 9, 135, 2835, 76545, 2525985, 98513415, 4433103675, 226088287425, 12887032383225, 811883040143175, 56019929769879075, 4201494732740930625, 340321073352015380625, 29607933381625338114375, 2753537804491156444636875, 272600242644624488019050625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    F:=Factorial;; List([1..20], n-> 3^(n-1)*F(2*n)/(2^n*F(n))); # G. C. Greubel, Nov 11 2019
  • Magma
    F:=Factorial; [3^(n-1)*F(2*n)/(2^n*F(n)): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq(3^(n-1)*(2*n)!/(2^n*n!), n=1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[3^(n-1)*(2*n)!/(2^n*n!), {n,20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    a(n) = prod(j=1, n, 6*j-3)/3; \\ Michel Marcus, Mar 13 2019
    
  • Sage
    f=factorial; [3^(n-1)*f(2*n)/(2^n*f(n)) for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

3*a(n) = (6*n-3)(!^6) = Product_{j=1..n} (6*j-3) = 3^n*A001147(n) = 3^n*(2*n)!/(2^n*n!).
E.g.f.: (-1 + (1-6*x)^(-1/2))/3.
a(n) = 2*(3/2)^(n-1)*(n+1)!*C(n), where C(n) = A000108(n). - G. C. Greubel, Nov 11 2019
D-finite with recurrence: a(n) + 3*(-2*n+1)*a(n-1) = 0. - R. J. Mathar, Feb 24 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = e^(1/6)*sqrt(3*Pi/2)*erf(1/sqrt(6)), where erf is the error function.
Sum_{n>=1} (-1)^(n+1)/a(n) = e^(-1/6)*sqrt(3*Pi/2)*erfi(1/sqrt(6)), where erfi is the imaginary error function. (End)

A034788 a(n) is the n-th sextic factorial number divided by 6.

Original entry on oeis.org

1, 12, 216, 5184, 155520, 5598720, 235146240, 11287019520, 609499054080, 36569943244800, 2413616254156800, 173780370299289600, 13554868883344588800, 1138608986200945459200, 102474808758085091328000, 9837581640776168767488000, 1003433327359169214283776000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([1..20], n-> 6^(n-1)*Factorial(n) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [6^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq(6^(n-1)*n!, n=1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Table[6^(n-1)*n!,{n,20}] (* Harvey P. Dale, Dec 22 2013 *)
  • PARI
    vector(20, n, 6^(n-1)*n!) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [6^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

6*a(n) = (6*n)(!^6) = Product_{j=1..n} 6*j = 6^n*n!.
E.g.f.: (-1 + 1/(1-6*x))/6.
D-finite with recurrence: a(n) - 6*n*a(n-1) = 0. - R. J. Mathar, Feb 24 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 6*(exp(1/6)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*(1-exp(-1/6)). (End)

A256268 Table of k-fold factorials, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 15, 4, 1, 1, 1, 120, 105, 28, 5, 1, 1, 1, 720, 945, 280, 45, 6, 1, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jun 01 2015

Keywords

Comments

A variant of A142589.

Examples

			1  1   1    1     1       1         1... A000012
1  1   2    6    24     120       720... A000142
1  1   3   15   105     945     10395... A001147
1  1   4   28   280    3640     58240... A007559
1  1   5   45   585    9945    208845... A007696
1  1   6   66  1056   22176    576576... A008548
1  1   7   91  1729   43225   1339975... A008542
1  1   8  120  2640   76560   2756160... A045754
1  1   9  153  3825  126225   5175225... A045755
1  1  10  190  5320  196840   9054640... A045756
1  1  11  231  7161  293601  14977651... A144773
		

Crossrefs

Cf. Diagonals : A092985, A076111, A158887.
Cf. A000142 ("1-fold"), A001147 (2-fold), A007559 (3), A007696 (4), A008548 (5), A008542 (6), A045754 (7), A045755 (8), A045756 (9), A144773 (10)

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Product([0..n-k-1], j-> j*k+1) ))); # G. C. Greubel, Mar 04 2020
  • Magma
    function T(n,k)
      if k eq 0 or n eq 0 then return 1;
      else return (&*[j*k+1: j in [0..n-1]]);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 04 2020
    
  • Maple
    seq(seq( mul(j*k+1, j=0..n-k-1), k=0..n), n=0..12); # G. C. Greubel, Mar 04 2020
  • Mathematica
    T[n_, k_]= Product[j*k+1, {j,0,n-1}]; Table[T[n-k,k], {n,0,12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 04 2020 *)
  • PARI
    T(n,k) = prod(j=0, n-1, j*k+1);
    for(n=0,12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 04 2020
    
  • Sage
    [[ product(j*k+1 for j in (0..n-k-1)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 04 2020
    

Formula

A(n, k) = (-n)^k*FallingFactorial(-1/n, k) for n >= 1. - Peter Luschny, Dec 21 2021
Previous Showing 11-20 of 40 results. Next