A045757
10-factorial numbers.
Original entry on oeis.org
1, 11, 231, 7161, 293601, 14973651, 913392711, 64850882481, 5252921480961, 478015854767451, 48279601331512551, 5359035747797893161, 648443325483545072481, 84946075638344404495011, 11977396665006561033796551, 1808586896415990716103279201, 291182490322974505292627951361
Offset: 1
-
List([1..20], n-> Product([0..n-1], j-> 10*j+1) ); # G. C. Greubel, Nov 11 2019
-
[(&*[10*j+1: j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
G(x):=-1+(1-10*x)^(-1/10): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=1..14); # Zerinvary Lajos, Apr 03 2009
seq(mul(10*j+1, j = 0..n-1), n = 1..20); # G. C. Greubel, Nov 11 2019
-
FoldList[Times,10*Range[0,20]+1] (* Harvey P. Dale, Dec 02 2016 *)
-
vector(21, n, prod(j=0,n-1, 10*j+1) ) \\ G. C. Greubel, Nov 11 2019
-
[product( (10*j+1) for j in (0..n-1)) for n in (1..20)] # G. C. Greubel, Nov 11 2019
A034689
a(n) = n-th sextic factorial number divided by 2.
Original entry on oeis.org
1, 8, 112, 2240, 58240, 1863680, 70819840, 3116072960, 155803648000, 8725004288000, 540950265856000, 36784618078208000, 2722061737787392000, 217764939022991360000, 18727784755977256960000, 1722956197549907640320000, 168849707359890948751360000
Offset: 1
-
[n le 1 select 1 else (6*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
Table[6^n*Pochhammer[1/3, n]/2, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
-
[6^n*rising_factorial(1/3,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 21 2022
A111146
Triangle T(n,k), read by rows, given by [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 5, 8, 0, 0, 6, 15, 17, 16, 0, 0, 24, 62, 68, 49, 32, 0, 0, 120, 322, 359, 243, 129, 64, 0, 0, 720, 2004, 2308, 1553, 756, 321, 128, 0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256, 0, 0, 40320, 119664
Offset: 0
Triangle begins:
.1;
.0, 1;
.0, 0, 2;
.0, 0, 1, 4;
.0, 0, 2, 5, 8;
.0, 0, 6, 15, 17, 16;
.0, 0, 24, 62, 68, 49, 32;
.0, 0, 120, 322, 359, 243, 129, 64;
.0, 0, 720, 2004, 2308, 1553, 756, 321, 128;
.0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256;
.0, 0, 40320, 119664, 148232, 105048, 49840, 18066, 5756, 1793, 512;
....................................................................
At y=2: Sum_{k=0..n} 2^k*T(n,k) = A113327(n) where (1 + 2*x + 8*x^2 + 36*x^3 +...+ A113327(n)*x^n +..) = 1/(1 - 2/1!*x*(1! + 2!*x + 3!*x^2 + 4!*x^3 +..) ).
At y=3: Sum_{k=0..n} 3^k*T(n,k) = A113328(n) where (1 + 3*x + 18*x^2 + 117*x^3 +...+ A113328(n)*x^n +..) = 1/(1 - 3/2!*x*(2! + 3!*x + 4!*x^2 + 5!*x^3 +..) ).
At y=4: Sum_{k=0..n} 4^k*T(n,k) = A113329(n) where (1 + 4*x + 32*x^2 + 272*x^3 +...+ A113329(n)*x^n +..) = 1/(1 - 4/3!*x*(3! + 4!*x + 5!*x^2 + 6!*x^3 +..) ).
-
T[n_, k_] := Module[{x = X + X*O[X]^n, y = Y + Y*O[Y]^k}, A = 1/(1 - x*y*Sum[x^j*Product[y + i, {i, 0, j - 1}], {j, 0, n}]); Coefficient[ Coefficient[A, X, n], Y, k]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019, from PARI *)
-
{T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); A=1/(1-x*y*sum(j=0,n,x^j*prod(i=0,j-1,y+i))); return(polcoeff(polcoeff(A,n,X),k,Y))} (Hanna)
A114799
Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0
a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
Cf. k-fold factorials:
A000142,
A001147 (and
A000165,
A006882),
A007559 (and
A032031,
A008544,
A007661),
A007696 (and
A001813,
A008545,
A047053,
A007662),
A008548 (and
A052562,
A047055,
A085157),
A085158 (and
A008542,
A047058,
A047657),
A045755.
-
a:= function(n)
if n<1 then return 1;
else return n*a(n-7);
fi;
end;
List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
-
b:= func< n | (n lt 8) select n else n*Self(n-7) >;
[1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
-
A114799 := proc(n)
option remember;
if n < 1 then
1;
else
n*procname(n-7) ;
end if;
end proc:
seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014
A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
-
a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
-
A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
-
def a(n):
if (n<1): return 1
else: return n*a(n-7)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
A346985
Expansion of e.g.f. 1 / (7 - 6 * exp(x))^(1/6).
Original entry on oeis.org
1, 1, 8, 113, 2325, 62896, 2109143, 84403033, 3924963750, 207976793991, 12369246804853, 815880360117978, 59107920881218525, 4665585774576259261, 398534278371999103888, 36627974592437584634573, 3603954453161886215458025, 377983931878997401821759456, 42095013846928585982896180123
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (6*n-5)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(7 - 6 Exp[x])^(1/6), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 6^k Pochhammer[1/6, k], {k, 0, n}], {n, 0, 18}]
-
a[n]:=if n=0 then 1 else (1/n)*sum(binomial(n,k)*(n+5*k)*a[k],k,0,n-1);
makelist(a[n],n,0,50); /* Tani Akinari, Aug 22 2023 */
A034724
a(n) = n-th sextic factorial number divided by 4.
Original entry on oeis.org
1, 10, 160, 3520, 98560, 3351040, 134041600, 6165913600, 320627507200, 18596395417600, 1190169306726400, 83311851470848000, 6331700711784448000, 519199458366324736000, 45689552336236576768000, 4294817919606238216192000, 429481791960623821619200000
Offset: 1
-
List([1..20], n-> Product([1..n], j-> 6*j-2)/4 ); # G. C. Greubel, Nov 11 2019
-
[(&*[6*j-2: j in [1..n]])/4: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(6*j-2, j=1..n)/4, n=1..20); # G. C. Greubel, Nov 11 2019
-
With[{nn=20},CoefficientList[Series[((1-6x)^(-2/3)-1)/4,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 02 2017 *)
Table[6^n*Pochhammer[2/3, n]/4, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
-
vector(20, n, prod(j=1,n, 6*j-2)/4 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (6*j-2) for j in (1..n))/4 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A034787
a(n) = n-th sextic factorial number divided by 5.
Original entry on oeis.org
1, 11, 187, 4301, 124729, 4365515, 178986115, 8412347405, 445854412465, 26305410335435, 1709851671803275, 121399468698032525, 9347759089748504425, 775864004449125867275, 69051896395972202187475, 6559930157617359207810125, 662552945919353279988822625
Offset: 1
-
List([1..20], n-> Product([1..n], j-> 6*j-1)/5 ); # G. C. Greubel, Nov 11 2019
-
[(&*[6*j-1: j in [1..n]])/5: n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq( mul(6*j-1, j=1..n)/5, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[6^n*Pochhammer[5/6, n]/5, {n,20}] (* G. C. Greubel, Nov 11 2019 *)
With[{nn=20},CoefficientList[Series[(-1+(1-6x)^(-5/6))/5,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 21 2024 *)
-
vector(20, n, prod(j=1,n, 6*j-1)/5 ) \\ G. C. Greubel, Nov 11 2019
-
[product( (6*j-1) for j in (1..n))/5 for n in (1..20)] # G. C. Greubel, Nov 11 2019
A034723
a(n) is the n-th sextic factorial number divided by 3.
Original entry on oeis.org
1, 9, 135, 2835, 76545, 2525985, 98513415, 4433103675, 226088287425, 12887032383225, 811883040143175, 56019929769879075, 4201494732740930625, 340321073352015380625, 29607933381625338114375, 2753537804491156444636875, 272600242644624488019050625
Offset: 1
-
F:=Factorial;; List([1..20], n-> 3^(n-1)*F(2*n)/(2^n*F(n))); # G. C. Greubel, Nov 11 2019
-
F:=Factorial; [3^(n-1)*F(2*n)/(2^n*F(n)): n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq(3^(n-1)*(2*n)!/(2^n*n!), n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[3^(n-1)*(2*n)!/(2^n*n!), {n,20}] (* G. C. Greubel, Nov 11 2019 *)
-
a(n) = prod(j=1, n, 6*j-3)/3; \\ Michel Marcus, Mar 13 2019
-
f=factorial; [3^(n-1)*f(2*n)/(2^n*f(n)) for n in (1..20)] # G. C. Greubel, Nov 11 2019
A034788
a(n) is the n-th sextic factorial number divided by 6.
Original entry on oeis.org
1, 12, 216, 5184, 155520, 5598720, 235146240, 11287019520, 609499054080, 36569943244800, 2413616254156800, 173780370299289600, 13554868883344588800, 1138608986200945459200, 102474808758085091328000, 9837581640776168767488000, 1003433327359169214283776000
Offset: 1
-
List([1..20], n-> 6^(n-1)*Factorial(n) ); # G. C. Greubel, Nov 11 2019
-
[6^(n-1)*Factorial(n): n in [1..20]]; // G. C. Greubel, Nov 11 2019
-
seq(6^(n-1)*n!, n=1..20); # G. C. Greubel, Nov 11 2019
-
Table[6^(n-1)*n!,{n,20}] (* Harvey P. Dale, Dec 22 2013 *)
-
vector(20, n, 6^(n-1)*n!) \\ G. C. Greubel, Nov 11 2019
-
[6^(n-1)*factorial(n) for n in (1..20)] # G. C. Greubel, Nov 11 2019
A256268
Table of k-fold factorials, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 15, 4, 1, 1, 1, 120, 105, 28, 5, 1, 1, 1, 720, 945, 280, 45, 6, 1, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1
Offset: 0
1 1 1 1 1 1 1... A000012
1 1 2 6 24 120 720... A000142
1 1 3 15 105 945 10395... A001147
1 1 4 28 280 3640 58240... A007559
1 1 5 45 585 9945 208845... A007696
1 1 6 66 1056 22176 576576... A008548
1 1 7 91 1729 43225 1339975... A008542
1 1 8 120 2640 76560 2756160... A045754
1 1 9 153 3825 126225 5175225... A045755
1 1 10 190 5320 196840 9054640... A045756
1 1 11 231 7161 293601 14977651... A144773
-
Flat(List([0..12], n-> List([0..n], k-> Product([0..n-k-1], j-> j*k+1) ))); # G. C. Greubel, Mar 04 2020
-
function T(n,k)
if k eq 0 or n eq 0 then return 1;
else return (&*[j*k+1: j in [0..n-1]]);
end if; return T; end function;
[T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 04 2020
-
seq(seq( mul(j*k+1, j=0..n-k-1), k=0..n), n=0..12); # G. C. Greubel, Mar 04 2020
-
T[n_, k_]= Product[j*k+1, {j,0,n-1}]; Table[T[n-k,k], {n,0,12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 04 2020 *)
-
T(n,k) = prod(j=0, n-1, j*k+1);
for(n=0,12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 04 2020
-
[[ product(j*k+1 for j in (0..n-k-1)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 04 2020
Comments