A380310
Expansion of e.g.f. exp( 1 - 1/(1-5*x)^(1/5) ).
Original entry on oeis.org
1, -1, -5, -49, -719, -14077, -344909, -10152829, -349045535, -13727327833, -607873987637, -29931556660105, -1622308999459631, -95982568510668373, -6155361624644676989, -425321834949751148053, -31502433469012320013631, -2489898822489054343250737, -209178052238110675644666341
Offset: 0
A020040
a(n) = round( Gamma(n+1/5)/Gamma(1/5) ).
Original entry on oeis.org
1, 0, 0, 1, 2, 7, 37, 229, 1647, 13507, 124269, 1267543, 14196477, 173197024, 2286200718, 32464050199, 493453563029, 7993947721071, 137495900802424, 2502425394604114, 48046567576398986, 970540665043259525
Offset: 0
-
[Round(Gamma(n+1/5)/Gamma(1/5)): n in [0..30]]; // G. C. Greubel, Dec 06 2019
-
Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
seq( round(pochhammer(1/5, n)), n=0..30); # G. C. Greubel, Dec 06 2019
-
Table[Round[Pochhammer[1/5,n]], {n,0,30}] (* G. C. Greubel, Dec 06 2019 *)
-
x=1/5; vector(30, n, round(gamma(n-1+x)/gamma(x)) ) \\ G. C. Greubel, Dec 06 2019
-
[round(rising_factorial(1/5,n)) for n in (0..30)] # G. C. Greubel, Dec 06 2019
A153274
Triangle, read by rows, T(n,k) = k^(n+1) * Pochhammer(1/k, n+1).
Original entry on oeis.org
2, 6, 15, 24, 105, 280, 120, 945, 3640, 9945, 720, 10395, 58240, 208845, 576576, 5040, 135135, 1106560, 5221125, 17873856, 49579075, 40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000, 362880, 34459425, 608608000, 4996616625, 26381811456, 104463111025, 337767408000, 939536222625
Offset: 1
Triangle begins as:
2;
6, 15;
24, 105, 280;
120, 945, 3640, 9945;
720, 10395, 58240, 208845, 576576;
5040, 135135, 1106560, 5221125, 17873856, 49579075;
40320, 2027025, 24344320, 151412625, 643458816, 2131900225, 5925744000;
-
Flat(List([1..12], n-> List([1..n], k-> Product([0..n], j-> j*k+1 )))); # G. C. Greubel, Mar 05 2020
-
[(&*[j*k+1: j in [0..n]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 05 2020
-
seq(seq( k^(n+1)*pochhammer(1/k, n+1), k=1..n), n=1..12); # G. C. Greubel, Mar 05 2020
-
Table[Apply[Plus, CoefficientList[j*k^n*Pochhammer[(j+k)/k, n], j]], {n, 12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 05 2020 *)
Table[k^(n+1)*Pochhammer[1/k, n+1], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 05 2020 *)
-
T(n, k) = prod(j=0, n, j*k+1);
for(n=1, 12, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
[[k^(n+1)*rising_factorial(1/k,n+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 05 2020
A166973
Triangle T(n,k) read by rows: T(n, k) = (m*n - m*k + 1)*T(n - 1, k - 1) + (5*k - 4)*(m*k - (m - 1))*T(n - 1, k) where m = 0.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 43, 18, 1, 1, 259, 241, 34, 1, 1, 1555, 2910, 785, 55, 1, 1, 9331, 33565, 15470, 1940, 81, 1, 1, 55987, 378546, 281085, 56210, 4046, 112, 1, 1, 335923, 4219993, 4875906, 1461495, 161406, 7518, 148, 1, 1, 2015539, 46755846, 82234489
Offset: 1
Triangle T(n, k) starts:
n\k 1 2 3 4 5 6 7 8 9 10 ...
1: 1
2: 1 1
3: 1 7 1
4: 1 43 18 1
5: 1 259 241 34 1
6: 1 1555 2910 785 55 1
7: 1 9331 33565 15470 1940 81 1
8: 1 55987 378546 281085 56210 4046 112 1
9: 1 335923 4219993 4875906 1461495 161406 7518 148 1
10: 1 2015539 46755846 82234489 35567301 5658051 394464 12846 189 1
... Reformatted, - _Wolfdieter Lang_, Aug 13 2017
-
A[n_, 1] := 1; A[n_, n_] := 1; A[n_, k_] := A[n - 1, k - 1] + (5*k - 4)*A[n - 1,k]; Flatten[ Table[A[n, k], {n, 10}, {k, n}]] (* modified by G. C. Greubel, May 29 2016 *)
A081408
a(n) = (n+1)*a(n-5), with a(0)=a(1)=a(2)=a(3)=a(4)=1.
Original entry on oeis.org
1, 1, 1, 1, 1, 6, 7, 8, 9, 10, 66, 84, 104, 126, 150, 1056, 1428, 1872, 2394, 3000, 22176, 31416, 43056, 57456, 75000, 576576, 848232, 1205568, 1666224, 2250000, 17873856, 27143424, 39783744, 56651616, 78750000, 643458816, 1004306688, 1511782272
Offset: 0
A008548, A034323, A034300, A034301, A034325 sequences are combed together as A081408(5n+r) with r=0,1,2,3,4.
Cf.
A001147,
A002866,
A034001,
A007599,
A034000,
A007696,
A000407,
A034176,
A034177,
A008548,
A034323,
A034300,
A034301,
A034325 [double, triple, quartic, quintic, factorial subsequences], generated together in
A081405-
A081408.
-
a:=[1,1,1,1,1];; for n in [6..40] do a[n]:=n*a[n-5]; od; a; # G. C. Greubel, Aug 15 2019
-
a081407 n = a081408_list !! n
a081407_list = 1 : 1 : 1 : 1 : zipWith (*) [5..] a081407_list
-- Reinhard Zumkeller, Jan 05 2012
-
[n le 5 select 1 else n*Self(n-5): n in [1..40]]; // G. C. Greubel, Aug 15 2019
-
a[0]=a[1]=a[2]=a[3]=a[4]=1; a[x_]:= (x+1)*a[x-5]; Table[a[n], {n, 40}]
-
m=30; v=concat([1,1,1,1,1], vector(m-5)); for(n=6, m, v[n]=n*v[n-5] ); v \\ G. C. Greubel, Aug 15 2019
-
def a(n):
if (n<5): return 1
else: return (n+1)*a(n-5)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 15 2019
A091545
First column sequence of the array (7,2)-Stirling2 A091747.
Original entry on oeis.org
1, 42, 5544, 1507968, 696681216, 489070213632, 485157651922944, 646229992361361408, 1112808046846264344576, 2405890997281623512973312, 6380422924790865556405223424, 20366309975932442856045473169408, 77025384328976498881563979526701056, 340606249502734078054275917467072069632
Offset: 1
-
a[n_] := 5^(2*n) * Pochhammer[1/5, n] * Pochhammer[2/5, n] / 2; Array[a, 15] (* Amiram Eldar, Sep 01 2025 *)
A113146
Row 5 of table A113143; equal to INVERT of quintic (or 5-fold) factorials shifted one place right.
Original entry on oeis.org
1, 1, 2, 9, 83, 1226, 24727, 627909, 19169758, 682800001, 27776711627, 1270110048234, 64470498348983, 3596569233141701, 218698213338646702, 14395754017090902609, 1019782749198898131883, 77351848007810972904826
Offset: 0
A(x) = 1 + x + 2*x^2 + 9*x^3 + 83*x^4 + 1226*x^5 +...
= 1/(1 - x - x^2 - 6*x^3 - 66*x^4 -...- A008548(n)*x^(n+1)
-...).
-
{a(n)=local(x=X+X*O(X^n)); A=1/(1-x-x^2*sum(j=0,n,x^j*prod(i=0,j,5*i+1)));return(polcoeff(A,n,X))}
A153189
Triangle T(n,k) = Product_{j=0..k} n*j+1.
Original entry on oeis.org
1, 1, 2, 1, 3, 15, 1, 4, 28, 280, 1, 5, 45, 585, 9945, 1, 6, 66, 1056, 22176, 576576, 1, 7, 91, 1729, 43225, 1339975, 49579075, 1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000, 1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625
Offset: 0
Triangle begins as:
1;
1, 2;
1, 3, 15;
1, 4, 28, 280;
1, 5, 45, 585, 9945;
1, 6, 66, 1056, 22176, 576576;
1, 7, 91, 1729, 43225, 1339975, 49579075;
1, 8, 120, 2640, 76560, 2756160, 118514880, 5925744000;
1, 9, 153, 3825, 126225, 5175225, 253586025, 14454403425, 939536222625;
Cf.
A000142 (row 2),
A001147 (3),
A007559 (4),
A007696 (5),
A008548 (6),
A008542 (7),
A045754 (8),
A045755 (9),
A045756 (10),
A144773 (11),
A256268 (combined table).
-
[(&*[n*j+1: j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 15 2020
-
seq(seq(mul(n*j+1, j=0..k), k=0..n), n=0..10); # G. C. Greubel, Feb 15 2020
-
T[n_, k_]= If[n==0 && k==0, 1, Product[n*j+1, {j,0,k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 15 2020 *)
T[n_, k_]:= T[n, k]= If[k<2, 1+k*n, ((1+n*k)*T[n, k-1] + (1+n*k)*(1+n*(k-1))* T[n, k-2])/2]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Georg Fischer, Feb 17 2020 *)
-
T(n,k)=prod(j=0,k,n*j+1) \\ M. F. Hasler, Oct 28 2014
-
[[ product(n*j+1 for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 15 2020
A276482
a(n) = 5^n*Gamma(n+1/5)*Gamma(n+1)/Gamma(1/5).
Original entry on oeis.org
1, 1, 12, 396, 25344, 2661120, 415134720, 90084234240, 25944259461120, 9573431741153280, 4403778600930508800, 2470519795122015436800, 1660189302321994373529600, 1316530116741341538208972800, 1216473827868999581305090867200, 1295544626680484554089921773568000
Offset: 0
-
seq(mul(k*(5*k-4),k=1..n), n=0..20); # Robert Israel, Sep 18 2016
-
FullSimplify[Table[5^n Gamma[n + 1/5] (Gamma[n + 1]/Gamma[1/5]), {n, 0, 15}]]
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2),n]]; Array[polygorial[12, #] &, 16, 0] (* Robert G. Wilson v, Dec 13 2016 *)
-
a(n) = prod(k=1, n, k*(5*k - 4)); \\ Michel Marcus, Sep 06 2016
A368119
Array read by ascending antidiagonals. A(n, k) = Product_{j=0..k-1} (n*j + 1).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 6, 1, 1, 1, 4, 15, 24, 1, 1, 1, 5, 28, 105, 120, 1, 1, 1, 6, 45, 280, 945, 720, 1, 1, 1, 7, 66, 585, 3640, 10395, 5040, 1, 1, 1, 8, 91, 1056, 9945, 58240, 135135, 40320, 1, 1, 1, 9, 120, 1729, 22176, 208845, 1106560, 2027025, 362880, 1
Offset: 0
Array A(n, k) starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[1] 1, 1, 2, 6, 24, 120, 720, 5040, ... A000142
[2] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147
[3] 1, 1, 4, 28, 280, 3640, 58240, 1106560, ... A007559
[4] 1, 1, 5, 45, 585, 9945, 208845, 5221125, ... A007696
[5] 1, 1, 6, 66, 1056, 22176, 576576, 17873856, ... A008548
[6] 1, 1, 7, 91, 1729, 43225, 1339975, 49579075, ... A008542
[7] 1, 1, 8, 120, 2640, 76560, 2756160, 118514880, ... A045754
[8] 1, 1, 9, 153, 3825, 126225, 5175225, 253586025, ... A045755
-
def A(n, k): return n**k * rising_factorial(1/n, k) if n > 0 else 1
for n in range(9): print([A(n, k) for k in range(8)])
Comments