cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A135453 a(n) = 12*n^2.

Original entry on oeis.org

0, 12, 48, 108, 192, 300, 432, 588, 768, 972, 1200, 1452, 1728, 2028, 2352, 2700, 3072, 3468, 3888, 4332, 4800, 5292, 5808, 6348, 6912, 7500, 8112, 8748, 9408, 10092, 10800, 11532, 12288, 13068, 13872, 14700, 15552, 16428, 17328, 18252, 19200, 20172, 21168, 22188
Offset: 0

Views

Author

Ben Paul Thurston, Dec 14 2007

Keywords

Comments

Areas of perfect 4:3 rectangles (for n > 0).
Sequence found by reading the line from 0, in the direction 0, 12, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A069190 in the same spiral. - Omar E. Pol, Sep 16 2011
(x,y,z) = (-a(n), 1 + n*a(n), 1 - n*a(n)) are solutions of the Diophantine equation x^3 + 2*y^3 + 2*z^3 = 4. - XU Pingya, Apr 30 2022

Examples

			192 is on the list since 16*12 is a 4:3 rectangle with integer sides and an area of 192.
		

Crossrefs

Programs

Formula

a(n) = 12*A000290(n) = 6*A001105(n) = 4*A033428(n) = 3*A016742(n) = 2*A033581(n). - Omar E. Pol, Dec 13 2008
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/72 (A086729).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/144.
Product_{n>=1} (1 + 1/a(n)) = 2*sqrt(3)*sinh(Pi/(2*sqrt(3)))/Pi.
Product_{n>=1} (1 - 1/a(n)) = 2*sqrt(3)*sin(Pi/(2*sqrt(3)))/Pi. (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 12*x*(1 + x)/(1-x)^3.
E.g.f.: 12*x*(1 + x)*exp(x).
a(n) = n*A008594(n) = A195143(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from Stefan Steinerberger, Dec 17 2007
Minor edits from Omar E. Pol, Dec 15 2008

A017641 a(n) = 12*n + 10.

Original entry on oeis.org

10, 22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142, 154, 166, 178, 190, 202, 214, 226, 238, 250, 262, 274, 286, 298, 310, 322, 334, 346, 358, 370, 382, 394, 406, 418, 430, 442, 454, 466, 478, 490, 502, 514, 526, 538, 550, 562, 574, 586, 598, 610, 622, 634
Offset: 0

Views

Author

Keywords

Comments

Exponents e such that x^e + x^2 - 1 is reducible.
If Y is a 4-subset of an (2n+1)-set X then, for n>=3, a(n-2) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007

Crossrefs

Programs

Formula

A030132(a(n)) = 9. - Reinhard Zumkeller, Jul 04 2007
G.f.: 2*(5 + x)/(1 - x)^2. - Stefano Spezia, May 09 2021
Sum_{n>=0} (-1)^n/a(n) = Pi/12 - sqrt(3)*log(2 + sqrt(3))/12. - Amiram Eldar, Dec 12 2021
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 2*exp(x)*(5 + 6*x).
a(n) = 2*A016969(n).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)

A017605 a(n) = 12*n + 7.

Original entry on oeis.org

7, 19, 31, 43, 55, 67, 79, 91, 103, 115, 127, 139, 151, 163, 175, 187, 199, 211, 223, 235, 247, 259, 271, 283, 295, 307, 319, 331, 343, 355, 367, 379, 391, 403, 415, 427, 439, 451, 463, 475, 487, 499, 511, 523, 535, 547, 559, 571, 583, 595, 607, 619, 631
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 2*(12*n+1) - a(n-1) = 2*a(n-1) - a(n-2) with a(0) = 7, a(1) = 19. - Vincenzo Librandi, Nov 19 2010
a(n) = (n+1)*A016921(n+1) - n*A016921(n). - Bruno Berselli, Jan 18 2013
a(n) = A003215(n+1) - 6*A000217(n-1). - Leo Tavares, Jul 25 2021
From Elmo R. Oliveira, Apr 02 2024: (Start)
G.f.: (7+5*x)/(1-x)^2.
E.g.f.: exp(x)*(7 + 12*x).
a(n) = A049453(n+1) - A049453(n) = A142241(n)/2. (End)

A017617 a(n) = 12*n + 8.

Original entry on oeis.org

8, 20, 32, 44, 56, 68, 80, 92, 104, 116, 128, 140, 152, 164, 176, 188, 200, 212, 224, 236, 248, 260, 272, 284, 296, 308, 320, 332, 344, 356, 368, 380, 392, 404, 416, 428, 440, 452, 464, 476, 488, 500, 512, 524, 536, 548, 560, 572, 584, 596, 608, 620, 632, 644, 656
Offset: 0

Views

Author

Keywords

Comments

Also the number of cube units that frame a cube of edge length n+1. - Peter M. Chema, Mar 27 2016

Examples

			For n=3; a(3)= 12*3 + 8 = 44.
Thus, there are 44 cube units that frame a cube of edge length 4. - _Peter M. Chema_, Mar 26 2016
		

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 08 2011
A089911(a(n)) = 9. - Reinhard Zumkeller, Jul 05 2013
G.f.: 12*x/(1-x)^2 + 8/(1-x) = 4*(2+x)/(1-x)^2. (see the PARI program). - Wolfdieter Lang, Oct 11 2021
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/36 - log(2)/12. - Amiram Eldar, Dec 12 2021
From Elmo R. Oliveira, Apr 04 2025: (Start)
E.g.f.: 4*exp(x)*(2 + 3*x).
a(n) = 4*A016789(n) = 2*A016957(n) = A016933(2*n+1). (End)

A017557 a(n) = 12*n + 3.

Original entry on oeis.org

3, 15, 27, 39, 51, 63, 75, 87, 99, 111, 123, 135, 147, 159, 171, 183, 195, 207, 219, 231, 243, 255, 267, 279, 291, 303, 315, 327, 339, 351, 363, 375, 387, 399, 411, 423, 435, 447, 459, 471, 483, 495, 507, 519, 531, 543, 555, 567, 579, 591, 603, 615, 627, 639
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 44 ).

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 07 2011
A089911(2*a(n)) = 8. - Reinhard Zumkeller, Jul 05 2013
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: 3*(1+3*x)/(1-x)^2.
E.g.f.: 3*(1+4*x)*exp(x). (End)
Sum_{n>=0} (-1)^n/a(n) = (Pi + 2*log(sqrt(2)+1))/(12*sqrt(2)). - Amiram Eldar, Dec 12 2021

A017653 a(n) = 12*n + 11.

Original entry on oeis.org

11, 23, 35, 47, 59, 71, 83, 95, 107, 119, 131, 143, 155, 167, 179, 191, 203, 215, 227, 239, 251, 263, 275, 287, 299, 311, 323, 335, 347, 359, 371, 383, 395, 407, 419, 431, 443, 455, 467, 479, 491, 503, 515, 527, 539, 551, 563, 575, 587, 599, 611, 623, 635
Offset: 0

Views

Author

Keywords

Comments

Or, with a different offset, 12*n - 1. In any case, numbers congruent to -1 (mod 12). - Alonso del Arte, May 29 2011
Numbers congruent to 2 (mod 3) and 3 (mod 4). - Bruno Berselli, Jul 06 2017

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 08 2011
G.f.: (11+x)/(1-x)^2. - Colin Barker, Feb 19 2012
A089911(2*a(n)) = 11. - Reinhard Zumkeller, Jul 05 2013
a(n) = 2*A003215(n+1) - 1 - 2*A003215(n). See Twin Hexagonal Frames illustration. - Leo Tavares, Aug 19 2021
From Elmo R. Oliveira, Apr 12 2025: (Start)
E.g.f.: exp(x)*(11 + 12*x).
a(n) = A016969(2*n+1). (End)

A168185 Characteristic function of numbers that are not multiples of 12.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2009

Keywords

Comments

a(n+12) = a(n);
a(n) = A000007(A010881(n));
a(A168186(n)) = 1; a(A008594(n)) = 0;
A033444(n) = Sum_{k=0..n} a(k)*(n-k).

Crossrefs

Programs

Formula

For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m,n > 0. - Boris Putievskiy, May 08 2013

A017581 a(n) = 12*n + 5.

Original entry on oeis.org

5, 17, 29, 41, 53, 65, 77, 89, 101, 113, 125, 137, 149, 161, 173, 185, 197, 209, 221, 233, 245, 257, 269, 281, 293, 305, 317, 329, 341, 353, 365, 377, 389, 401, 413, 425, 437, 449, 461, 473, 485, 497, 509, 521, 533, 545, 557, 569, 581, 593, 605, 617, 629
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(71).
A089911(2*a(n)) = 7. - Reinhard Zumkeller, Jul 05 2013
Equivalently, intersection of A016813 and A016789. - Bruno Berselli, Jan 24 2018

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) for n>1, a(0)=5, a(1)=17. - Vincenzo Librandi, Jun 08 2011
G.f.: x*(5 + 7*x)/(1 - x)^2. - Wolfdieter Lang, Jul 04 2023
E.g.f.: exp(x)*(5 + 12*x). - Stefano Spezia, Feb 21 2024
a(n) = A016969(2*n) = A016789(4*n+1). - Elmo R. Oliveira, Apr 10 2025

A190991 a(n) = 13*n + 1.

Original entry on oeis.org

1, 14, 27, 40, 53, 66, 79, 92, 105, 118, 131, 144, 157, 170, 183, 196, 209, 222, 235, 248, 261, 274, 287, 300, 313, 326, 339, 352, 365, 378, 391, 404, 417, 430, 443, 456, 469, 482, 495, 508, 521, 534, 547, 560, 573, 586, 599, 612, 625, 638, 651, 664, 677
Offset: 0

Views

Author

Keywords

Comments

Partial sums give A051867. - Leo Tavares, Mar 19 2023

Crossrefs

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 11 2011
From Alejandro J. Becerra Jr., Jun 04 2020: (Start)
a(n) = 13*A001477(n) + A000012(n).
G.f.: (1 + 12*x)/(1 - x)^2. (End)
E.g.f.: (1+13*x)*exp(x). - G. C. Greubel, Sep 16 2022

A094053 Triangle read by rows: T(n,k) = k*(n-k), 1 <= k <= n.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 3, 4, 3, 0, 4, 6, 6, 4, 0, 5, 8, 9, 8, 5, 0, 6, 10, 12, 12, 10, 6, 0, 7, 12, 15, 16, 15, 12, 7, 0, 8, 14, 18, 20, 20, 18, 14, 8, 0, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11, 0, 12
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2004

Keywords

Comments

T(n,k) = A003991(n-1,k) for 1 <= k < n;
T(n,k) = T(n,n-1-k) for k < n;
T(n,1) = n-1; T(n,n) = 0; T(n,2) = A005843(n-2) for n > 1;
T(n,3) = A008585(n-3) for n>2; T(n,4) = A008586(n-4) for n > 3;
T(n,5) = A008587(n-5) for n>4; T(n,6) = A008588(n-6) for n > 5;
T(n,7) = A008589(n-7) for n>6; T(n,8) = A008590(n-8) for n > 7;
T(n,9) = A008591(n-9) for n>8; T(n,10) = A008592(n-10) for n > 9;
T(n,11) = A008593(n-11) for n>10; T(n,12) = A008594(n-12) for n > 11;
T(n,13) = A008595(n-13) for n>12; T(n,14) = A008596(n-14) for n > 13;
T(n,15) = A008597(n-15) for n>14; T(n,16) = A008598(n-16) for n > 15;
T(n,17) = A008599(n-17) for n>16; T(n,18) = A008600(n-18) for n > 17;
T(n,19) = A008601(n-19) for n>18; T(n,20) = A008602(n-20) for n > 19;
Row sums give A000292; triangle sums give A000332;
All numbers m > 0 occur A000005(m) times;
A002378(n) = T(A005408(n),n+1) = n*(n+1).
k-th columns are arithmetic progressions with step k, starting with 0. If a zero is prefixed to the sequence, then we get a new table where the columns are again arithmetic progressions with step k, but starting with k, k=0,1,2,...: 1st column = (0,0,0,...), 2nd column = (1,2,3,...), 3rd column = (2,4,6,8,...), etc. - M. F. Hasler, Feb 02 2013
Construct the infinite-dimensional matrix representation of angular momentum operators (J_1,J_2,J_3) in the Jordan-Schwinger form (cf. Harter, Klee, Schwinger). The triangle terms T(n,k) = T(2j,j+m) satisfy: (1/2)T(2j,j+m)^(1/2) = = = i = -i . Matrices for J_1 and J_2 are sparse. These equalities determine the only nonzero entries. - Bradley Klee, Jan 29 2016
T(n+1,k+1) is the number of degrees of freedom of a k-dimensional affine subspace within an n-dimensional vector space. This is most readily interpreted geometrically: e.g. in 3 dimensions a line (1-dimensional subspace) has T(4,2) = 4 degrees of freedom and a plane has T(4,3) = 3. T(n+1,1) = n indicates that points in n dimensions have n degrees of freedom. T(n,n) = 0 for any n as all n-dimensional spaces in an n-dimensional space are equivalent. - Daniel Leary, Apr 29 2020

Examples

			From _M. F. Hasler_, Feb 02 2013: (Start)
Triangle begins:
  0;
  1, 0;
  2, 2, 0;
  3, 4, 3, 0;
  4, 6, 6, 4, 0;
  5, 8, 9, 8, 5, 0;
  (...)
If an additional 0 was added at the beginning, this would become:
  0;
  0, 1;
  0, 2, 2;
  0, 3, 4; 3;
  0, 4, 6, 6, 4;
  0, 5, 8, 9, 8, 5;
  ... (End)
		

Crossrefs

J_3: A114327; J_1^2, J_2^2: A141387, A268759.
Cf. A000292 (row sums), A000332 (triangle sums).
T(n,k) for values of k:
A005843 (k=2), A008585 (k=3), A008586 (k=4), A008587 (k=5), A008588 (k=6), A008589 (k=7), A008590 (k=8), A008591 (k=9), A008592 (k=10), A008593 (k=11), A008594 (k=12), A008595 (k=13), A008596 (k=14), A008597 (k=15), A008598 (k=16), A008599 (k=17), A008600 (k=18), A008601 (k=19), A008602 (k=20).

Programs

  • Magma
    /* As triangle */ [[k*(n-k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jan 30 2016
    
  • Mathematica
    Flatten[Table[(j - m) (j + m + 1), {j, 0, 10, 1/2}, {m, -j, j}]] (* Bradley Klee, Jan 29 2016 *)
  • PARI
    {for(n=1, 13, for(k=1, n, print1(k*(n - k)," ");); print(););} \\ Indranil Ghosh, Mar 12 2017
Previous Showing 11-20 of 54 results. Next