cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A016813 a(n) = 4*n + 1.

Original entry on oeis.org

1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233, 237
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 23 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 64 ).
Numbers k such that k and (k+1) have the same binary digital sum. - Benoit Cloitre, Jun 05 2002
Numbers k such that (1 + sqrt(k))/2 is an algebraic integer. - Alonso del Arte, Jun 04 2012
Numbers k such that 2 is the only prime p that satisfies the relationship p XOR k = p + k. - Brad Clardy, Jul 22 2012
This may also be interpreted as the array T(n,k) = A001844(n+k) + A008586(k) read by antidiagonals:
1, 9, 21, 37, 57, 81, ...
5, 17, 33, 53, 77, 105, ...
13, 29, 49, 73, 101, 133, ...
25, 45, 69, 97, 129, 165, ...
41, 65, 93, 125, 161, 201, ...
61, 89, 121, 157, 197, 241, ...
...
- R. J. Mathar, Jul 10 2013
With leading term 2 instead of 1, 1/a(n) is the largest tolerance of form 1/k, where k is a positive integer, so that the nearest integer to (n - 1/k)^2 and to (n + 1/k)^2 is n^2. In other words, if interval arithmetic is used to square [n - 1/k, n + 1/k], every value in the resulting interval of length 4n/k rounds to n^2 if and only if k >= a(n). - Rick L. Shepherd, Jan 20 2014
Odd numbers for which the number of prime factors congruent to 3 (mod 4) is even. - Daniel Forgues, Sep 20 2014
For the Collatz conjecture, we identify two types of odd numbers. This sequence contains all the descenders: where (3*a(n) + 1) / 2 is even and requires additional divisions by 2. See A004767 for the ascenders. - Fred Daniel Kline, Nov 29 2014 [corrected by Jaroslav Krizek, Jul 29 2016]
a(n-1), n >= 1, is also the complex dimension of the manifold M(S), the set of all conjugacy classes of irreducible representations of the fundamental group pi_1(X,x_0) of rank 2, where S = {a_1, ..., a_{n}, a_{n+1} = oo}, a subset of P^1 = C U {oo}, X = X(S) = P^1 \ S, and x_0 a base point in X. See the Iwasaki et al. reference, Proposition 2.1.4. p. 150. - Wolfdieter Lang, Apr 22 2016
For n > 3, also the number of (not necessarily maximal) cliques in the n-sunlet graph. - Eric W. Weisstein, Nov 29 2017
For integers k with absolute value in A047202, also exponents of the powers of k having the same unit digit of k in base 10. - Stefano Spezia, Feb 23 2021
Starting with a(1) = 5, numbers ending with 01 in base 2. - John Keith, May 09 2022

Examples

			From _Leo Tavares_, Jul 02 2021: (Start)
Illustration of initial terms:
                                        o
                        o               o
            o           o               o
    o     o o o     o o o o o     o o o o o o o
            o           o               o
                        o               o
                                        o
(End)
		

References

  • K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé, Vieweg, 1991. p. 150.

Crossrefs

Subsequence of A042963 and of A079523.
a(n) = A093561(n+1, 1), (4, 1)-Pascal column.
Cf. A004772 (complement).
Cf. A017557.

Programs

Formula

a(n) = A005408(2*n).
Sum_{n>=0} (-1)^n/a(n) = (1/(4*sqrt(2)))*(Pi+2*log(sqrt(2)+1)) = A181048 [Jolley]. - Benoit Cloitre, Apr 05 2002 [corrected by Amiram Eldar, Jul 30 2023]
G.f.: (1+3*x)/(1-x)^2. - Paul Barry, Feb 27 2003 [corrected for offset 0 by Wolfdieter Lang, Oct 03 2014]
(1 + 5*x + 9*x^2 + 13*x^3 + ...) = (1 + 2*x + 3*x^2 + ...) / (1 - 3*x + 9*x^2 - 27*x^3 + ...). - Gary W. Adamson, Jul 03 2003
a(n) = A001969(n) + A000069(n). - Philippe Deléham, Feb 04 2004
a(n) = A004766(n-1). - R. J. Mathar, Oct 26 2008
a(n) = 2*a(n-1) - a(n-2); a(0)=1, a(1)=5. a(n) = 4 + a(n-1). - Philippe Deléham, Nov 03 2008
A056753(a(n)) = 3. - Reinhard Zumkeller, Aug 23 2009
A179821(a(n)) = a(A179821(n)). - Reinhard Zumkeller, Jul 31 2010
a(n) = 8*n - 2 - a(n-1) for n > 0, a(0) = 1. - Vincenzo Librandi, Nov 20 2010
The identity (4*n+1)^2 - (4*n^2+2*n)*(2)^2 = 1 can be written as a(n)^2 - A002943(n)*2^2 = 1. - Vincenzo Librandi, Mar 11 2009 - Nov 25 2012
A089911(6*a(n)) = 8. - Reinhard Zumkeller, Jul 05 2013
a(n) = A004767(n) - 2. - Jean-Bernard François, Sep 27 2013
a(n) = A058281(3n+1). - Eli Jaffe, Jun 07 2016
From Ilya Gutkovskiy, Jul 29 2016: (Start)
E.g.f.: (1 + 4*x)*exp(x).
a(n) = Sum_{k = 0..n} A123932(k).
a(A005098(k)) = x^2 + y^2.
Inverse binomial transform of A014480. (End)
Dirichlet g.f.: 4*Zeta(-1 + s) + Zeta(s). - Stefano Spezia, Nov 02 2018

A089911 a(n) = Fibonacci(n) mod 12.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1, 2, 3, 5, 8, 1, 9, 10, 7, 5, 0, 5, 5, 10, 3, 1, 4, 5, 9, 2, 11, 1, 0, 1, 1
Offset: 0

Views

Author

Casey Mongoven, Nov 14 2003

Keywords

Comments

From Reinhard Zumkeller, Jul 05 2013: (Start)
Sequence has been applied by several composers to 12-tone equal temperament pitch structure. The complete Fibonacci mod 12 system (a set of 10 periodic sequences) exhausts all possible ordered dyads; that is, every possible combination of two pitches is found in these sets.
a(A008594(n)) = 0;
a(A227144(n)) = 1;
a(3*A047522(n)) = 2;
a(A017569(n)) = a(2*A016933(n)) = a(4*A016777(n)) = 3;
a(2*A017629(n)) = a(3*A017137(n)) = a(6*A004767(n)) = 4;
a(A227146(n)) = 5;
a(nonexistent) = 6;
a(2*A017581(n)) = 7;
a(2*A017557(n)) = a(4*A016813(n)) = 8;
a(A017617(n)) = a(2*A016957(n)) = a(4*A016789(n)) = 9;
a(3*A047621(n)) = 10;
a(2*A017653(n)) = 11. (End)

Crossrefs

Programs

  • Haskell
    a089911 n = a089911_list !! n
    a089911_list = 0 : 1 : zipWith (\u v -> (u + v) `mod` 12)
                           (tail a089911_list) a089911_list
    -- Reinhard Zumkeller, Jul 01 2013
    
  • Magma
    [Fibonacci(n) mod 12: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014
  • Maple
    with(combinat,fibonacci); A089911 := proc(n) fibonacci(n) mod 12; end;
  • Mathematica
    Table[Mod[Fibonacci[n], 12], {n, 0, 100}] (* Vincenzo Librandi, Feb 04 2014 *)
  • PARI
    a(n)=fibonacci(n)%12 \\ Charles R Greathouse IV, Feb 03 2014
    

Formula

Has period of 24, restricted period 12 and multiplier 5.
a(n) = (a(n-1) + a(n-2)) mod 12, a(0) = 0, a(1) = 1.

Extensions

More terms from Ray Chandler, Nov 15 2003

A017545 a(n) = 12*n + 2.

Original entry on oeis.org

2, 14, 26, 38, 50, 62, 74, 86, 98, 110, 122, 134, 146, 158, 170, 182, 194, 206, 218, 230, 242, 254, 266, 278, 290, 302, 314, 326, 338, 350, 362, 374, 386, 398, 410, 422, 434, 446, 458, 470, 482, 494, 506, 518, 530, 542, 554, 566, 578, 590, 602, 614, 626, 638
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 40 ).

Crossrefs

Subsequence of A072065.

Programs

Formula

a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Jun 07 2011
From G. C. Greubel, Sep 18 2019: (Start)
G.f.: 2*(1 + 5*x)/(1-x)^2.
E.g.f.: 2*(1 + 6*x)*exp(x). (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/12 + sqrt(3)*log(2 + sqrt(3))/12. - Amiram Eldar, Dec 12 2021

A369248 Numbers of the form 12*m+3 for which there is no representation as a sum (p*q + p*r + q*r) with three odd primes p <= q <= r.

Original entry on oeis.org

3, 15, 63, 99, 159, 171, 207, 219, 243, 279, 303, 339, 387, 399, 531, 579, 603, 639, 675, 699, 747, 783, 819, 879, 891, 963, 1059, 1107, 1143, 1179, 1215, 1227, 1299, 1323, 1359, 1467, 1527, 1563, 1611, 1659, 1731, 1779, 1791, 1803, 1899, 1923, 1971, 1983, 2007, 2019, 2115, 2235, 2319, 2403, 2427, 2487, 2499, 2547
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2024

Keywords

Crossrefs

Intersection of A017557 and A369056, multiples of 3 in the latter.

Programs

A056530 Sequence remaining after third round of Flavius Josephus sieve; remove every fourth term of A047241.

Original entry on oeis.org

1, 3, 7, 13, 15, 19, 25, 27, 31, 37, 39, 43, 49, 51, 55, 61, 63, 67, 73, 75, 79, 85, 87, 91, 97, 99, 103, 109, 111, 115, 121, 123, 127, 133, 135, 139, 145, 147, 151, 157, 159, 163, 169, 171, 175, 181, 183, 187, 193, 195, 199, 205, 207, 211, 217, 219, 223, 229, 231
Offset: 1

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Comments

Numbers {1, 3, 7} mod 12: A017533, A017557, A017605 interleaved.

Crossrefs

We have A000027 after 0 rounds of sieving, A005408 after 1 round of sieving, A047241 after 2 rounds, A056530 after 3 rounds, A056531 after 4 rounds, A000960 after all rounds. After n rounds the remaining sequence comprises A002944(n) numbers mod A003418(n+1), i.e. 1/(n+1) of them.

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,-1},{1,3,7,13},60] (* Harvey P. Dale, Oct 19 2022 *)

Formula

From Chai Wah Wu, Jul 24 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
G.f.: x*(5*x^3 + 4*x^2 + 2*x + 1)/(x^4 - x^3 - x + 1). (End)
a(n) = 4*n - (13 + 2*A131713(n))/3. - R. J. Mathar, Jun 22 2020

A096022 Numbers that are congruent to {15, 27, 39, 51} mod 60.

Original entry on oeis.org

15, 27, 39, 51, 75, 87, 99, 111, 135, 147, 159, 171, 195, 207, 219, 231, 255, 267, 279, 291, 315, 327, 339, 351, 375, 387, 399, 411, 435, 447, 459, 471, 495, 507, 519, 531, 555, 567, 579, 591, 615, 627, 639, 651, 675, 687, 699, 711, 735, 747, 759, 771, 795
Offset: 1

Views

Author

Klaus Brockhaus, Jun 15 2004

Keywords

Comments

Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 2 and (n+3) mod 5 <> 1.
This is one of a family of sequences which are defined (or could be defined) according to the same scheme: Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to k-1 and (n+k) mod (2+k) <> 1. We have A007310 for k = 1, A017629 for k = 2, this one (A096022) for k = 3, A096023 for k = 5, A096024 for k = 6, A096025 for k = 7, A096026 for k = 9, A096027 for k = 11. Remarkably these sequences are empty for k = 4, 8, 10, ... (i.e., if k+1 is a term of A080765).
Numbers n such that n mod 12 = 3 and n mod 60 <> 3.
Subsequence of A017557: 12n+3.

Examples

			51 mod 2 = 52 mod 3 = 53 mod 4 = 1 and 54 mod 5 = 4, hence 51 is in the sequence; 3 mod 2 = 4 mod 3 = 5 mod 4 = 6 mod 5 = 1, hence 3 is not in the sequence.
		

Crossrefs

Programs

  • Magma
    [ n : n in [1..1500] | n mod 60 in [15, 27, 39, 51] ] // Vincenzo Librandi, Mar 24 2011
  • Maple
    A096022:=n->3*(10*n-3-I^(2*n)-(1-I)*I^(-n)-(1+I)*I^n)/2: seq(A096022(n), n=1..80); # Wesley Ivan Hurt, Jun 04 2016
  • Mathematica
    Table[3*(10n-3-I^(2n)-(1-I)*I^(-n)-(1+I)*I^n)/2, {n, 80}] (* Wesley Ivan Hurt, Jun 04 2016 *)
  • PARI
    {k=3;m=800;for(n=1,m,j=0;b=1;while(b&&j
    				

Formula

G.f.: 3*x*(5+4*x+4*x^2+4*x^3+3*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 3*(10*n-3-i^(2*n)-(1-i)*i^(-n)-(1+i)*i^n)/2 where i=sqrt(-1). (End)
E.g.f.: 3*(3 + sin(x) - cos(x) + (5*x - 1)*sinh(x) - (2 - 5*x)*cosh(x)). - Ilya Gutkovskiy, Jun 05 2016

Extensions

New definition from Ralf Stephan, Dec 01 2004

A101493 Triangle read by rows: T(n,k) = (n+1)*(2*(n+1)-1) - k*(2*k-1).

Original entry on oeis.org

1, 6, 5, 15, 14, 9, 28, 27, 22, 13, 45, 44, 39, 30, 17, 66, 65, 60, 51, 38, 21, 91, 90, 85, 76, 63, 46, 25, 120, 119, 114, 105, 92, 75, 54, 29, 153, 152, 147, 138, 125, 108, 87, 62, 33, 190, 189, 184, 175, 162, 145, 124, 99, 70, 37, 231, 230, 225, 216, 203, 186, 165, 140, 111, 78, 41
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 21 2005

Keywords

Comments

The triangle is generated from the product B*A of the infinite lower triangular matrices A =
1 0 0 0 ...
1 1 0 0 ...
1 1 1 0 ...
1 1 1 1 ...
... and B =
1 0 0 0 ...
1 5 0 0 ...
1 5 9 0 ...
1 5 9 13 ...
...
T(n+0,0) = n*(2*n-1) = A000384(n) (Hexagonal numbers)
since T(n,n) = 4*n+1 = A016813(n).
T(n,n) = 4*n + 1 = A016813(n);
T(n+1,n) = 8*n + 6 = A017137(n);
T(n+2,n) = 12*n + 3 = A017557(n);
T(n,n)*T(n,0) = (n+1)*(2*n+1)*(4*n+1) = A079588(n).

Examples

			Triangle begins:
   1;
   6,  5;
  15, 14,  9;
  28, 27, 22, 13;
  45, 44, 39, 30, 17;
  66, 65, 60, 51, 38, 21;
		

Crossrefs

Row sums give 10-gonal pyramidal numbers: n(n+1)(8n-5)/6 = A007585(n+1).
Cf. A101492 (for product A*B), A007585, A000384.

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->(n+1)*(2*n+1)-k*(2*k-1)))); # Muniru A Asiru, Mar 05 2019
  • PARI
    T(n,k)=if(k>n,0,(n+1)*(2*(n+1)-1)-k*(2*k-1))
    for(i=0,10, for(j=0,i,print1(T(i,j),", "));print())
    

A316319 Coordination sequence for a trivalent node in a chamfered version of the 3^6 triangular tiling of the plane.

Original entry on oeis.org

1, 3, 7, 14, 25, 38, 51, 63, 75, 87, 99, 111, 123, 135, 147, 159, 171, 183, 195, 207, 219, 231, 243, 255, 267, 279, 291, 303, 315, 327, 339, 351, 363, 375, 387, 399, 411, 423, 435, 447, 459, 471, 483, 495, 507, 519, 531, 543, 555, 567, 579, 591, 603, 615, 627, 639
Offset: 0

Views

Author

Rémy Sigrist and N. J. A. Sloane, Jul 01 2018

Keywords

Comments

Let E denote the lattice of Eisenstein integers u + v*w in the plane, with each point joined to its six neighbors. Here u and v are ordinary integers and w = (-1+sqrt(-3))/2 is a complex cube root of unity. Let theta = w - w^2 = sqrt(-3). Then theta*E is a sublattice of E of index 3 (Conway-Sloane, Fig. 7.2). The tiling considered in this sequence is obtained by replacing each node in theta*E by a small hexagon.

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd. ed., 1993. See Fig. 7.2, page 199.

Crossrefs

See A316320 for hexavalent node.
See A250120 for links to thousands of other coordination sequences.
Cf. A017557.

Programs

  • PARI
    Vec((1 + x + x^2)*(1 + x^2 + 2*x^3 + x^4 - x^5) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Mar 11 2020

Formula

a(n) = 12*n-21 = A017557(n-2) for n > 5.
From Colin Barker, Mar 11 2020: (Start)
G.f.: (1 + x + x^2)*(1 + x^2 + 2*x^3 + x^4 - x^5) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>7.
(End)

Extensions

Terms a(16) and beyond from Andrey Zabolotskiy, Sep 30 2019

A316320 Coordination sequence for a hexavalent node in a chamfered version of the 3^6 triangular tiling of the plane.

Original entry on oeis.org

1, 6, 15, 27, 39, 51, 63, 75, 87, 99, 111, 123, 135, 147, 159, 171, 183, 195, 207, 219, 231, 243, 255, 267, 279, 291, 303, 315, 327, 339, 351, 363, 375, 387, 399, 411, 423, 435, 447, 459, 471, 483, 495, 507, 519, 531, 543, 555, 567, 579, 591, 603, 615, 627, 639
Offset: 0

Views

Author

Rémy Sigrist and N. J. A. Sloane, Jul 01 2018

Keywords

Comments

Let E denote the lattice of Eisenstein integers u + v*w in the plane, with each point joined to its six neighbors. Here u and v are ordinary integers and w = (-1+sqrt(-3))/2 is a complex cube root of unity. Let theta = w - w^2 = sqrt(-3). Then theta*E is a sublattice of E of index 3 (Conway-Sloane, Fig. 7.2). The tiling considered in this sequence is obtained by replacing each node in theta*E by a small hexagon.

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd. ed., 1993. See Fig. 7.2, page 199.

Crossrefs

See A316319 for trivalent node.
See A250120 for links to thousands of other coordination sequences.

Programs

  • PARI
    Vec((1 + 3*x)*(1 + x + x^2) / (1 - x)^2 + O(x^50)) \\ Colin Barker, Mar 11 2020

Formula

a(n) = 12*n-9 = A017557(n-1) for n > 1.
From Colin Barker, Mar 11 2020: (Start)
G.f.: (1 + 3*x)*(1 + x + x^2) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>3.
(End)

Extensions

Terms a(15) and beyond from Andrey Zabolotskiy, Sep 30 2019

A017566 a(n) = (12*n+3)^10.

Original entry on oeis.org

59049, 576650390625, 205891132094649, 8140406085191601, 119042423827613001, 984930291881790849, 5631351470947265625, 24842341419143568849, 90438207500880449001, 283942098606901565601, 792594609605189126649
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Showing 1-10 of 11 results. Next