cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 54 results. Next

A168186 Positive numbers that are not multiples of 12.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2009

Keywords

Comments

121 (in decimal) is a member of this sequence but not a member of A023805. - Robert Munafo, Jan 26 2010
80 is a member of this sequence but is not a member of A160453. - Franklin T. Adams-Watters, Jan 26 2010

Examples

			156 is in A023805 but not in this sequence. - _Franklin T. Adams-Watters_, Jan 26 2010
		

Crossrefs

Complement of A008594.
All three of A023805, A160453, A168186 are different.

Programs

Formula

A168185(a(n)) = 1.
A109015(a(n)) < 12.
From Chai Wah Wu, Jan 16 2020: (Start)
a(n) = a(n-1) + a(n-11) - a(n-12) for n > 12.
G.f.: x*(x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/(x^12 - x^11 - x + 1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (12*sqrt(6) - 4*sqrt(3) + 6*sqrt(2) - 15)*Pi/72. - Amiram Eldar, May 12 2025

A319073 Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 2, 4, 6, 3, 7, 8, 9, 4, 6, 14, 12, 12, 5, 12, 12, 21, 16, 15, 6, 8, 24, 18, 28, 20, 18, 7, 15, 16, 36, 24, 35, 24, 21, 8, 13, 30, 24, 48, 30, 42, 28, 24, 9, 18, 26, 45, 32, 60, 36, 49, 32, 27, 10, 12, 36, 39, 60, 40, 72, 42, 56, 36, 30, 11, 28, 24, 54, 52, 75, 48, 84, 48, 63, 40, 33, 12
Offset: 1

Views

Author

Omar E. Pol, Sep 22 2018

Keywords

Examples

			The corner of the square array begins:
         A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528
A000027:       1,      2,      3,      4,      5,      6,      7,      8, ...
A008585:       3,      6,      9,     12,     15,     18,     21,     24, ...
A008586:       4,      8,     12,     16,     20,     24,     28,     32, ...
A008589:       7,     14,     21,     28,     35,     42,     49,     56, ...
A008588:       6,     12,     18,     24,     30,     36,     42,     48, ...
A008594:      12,     24,     36,     48,     60,     72,     84,     96, ...
A008590:       8,     16,     24,     32,     40,     48,     56,     64, ...
A008597:      15,     30,     45,     60,     75,     90,    105,    120, ...
A008595:      13,     26,     39,     52,     65,     78,     91,    104, ...
A008600:      18,     36,     54,     72,     90,    108,    126,    144, ...
...
		

Crossrefs

Another version of A274824.
Antidiagonal sums give A175254.
Main diagonal gives A064987.
Row n lists the multiples of A000203(n).
Row 1 is A000027.
Initial zeros should be omitted in the following sequences related to the rows of the array:
Rows 6 and 11: A008594.
Rows 7-9: A008590, A008597, A008595.
Rows 10 and 17: A008600.
Rows 12-13: A135628, A008596.
Rows 14, 15 and 23: A008606.
Rows 16 and 25: A135631.
(Note that in the OEIS there are many other sequences that are also rows of this square array.)

Programs

  • GAP
    T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # Muniru A Asiru, Jan 01 2019
  • Maple
    with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)

A017522 a(n) = (12*n)^2.

Original entry on oeis.org

0, 144, 576, 1296, 2304, 3600, 5184, 7056, 9216, 11664, 14400, 17424, 20736, 24336, 28224, 32400, 36864, 41616, 46656, 51984, 57600, 63504, 69696, 76176, 82944, 90000, 97344, 104976, 112896, 121104, 129600, 138384, 147456, 156816, 166464, 176400, 186624, 197136
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000290 (n^2), A008594 (12*n).

Programs

Formula

G.f.: 144*x*(1+x)/(1-x)^3. - Bruno Berselli, Feb 10 2012
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/864.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/1728.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/12)/(Pi/12).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/12)/(Pi/12) = 3*sqrt(2)*(sqrt(3)-1)/Pi. (End)
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 144*x*(1 + x)*exp(x).
a(n) = 144*A000290(n) = A008594(n)^2 = A000290(A008594(n)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A158547 a(n) = 24*n^2 + 1.

Original entry on oeis.org

1, 25, 97, 217, 385, 601, 865, 1177, 1537, 1945, 2401, 2905, 3457, 4057, 4705, 5401, 6145, 6937, 7777, 8665, 9601, 10585, 11617, 12697, 13825, 15001, 16225, 17497, 18817, 20185, 21601, 23065, 24577, 26137, 27745, 29401, 31105, 32857, 34657, 36505, 38401, 40345
Offset: 0

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (24*n^2 + 1)^2 - (144*n^2 + 12)*(2*n)^2 = 1 can be written as a(n)^2 - A158546(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[1, 25, 97]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1, 25, 97}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
  • PARI
    for(n=0, 40, print1(24*n^2+1", ")); \\ Vincenzo Librandi, Feb 14 2012

Formula

G.f.: (1 + 22*x + 25*x^2)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=0} 1/a(n) = 1/2 + coth(Pi/(2*sqrt(6)))*Pi/(4*sqrt(6)).
Sum_{n>=0} (-1)^n/a(n) = 1/2 + cosech(Pi/(2*sqrt(6)))*Pi/(4*sqrt(6)). (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: exp(x)*(1 + 24*x + 24*x^2).
a(n) = A227776(2*n). (End)

Extensions

Comment rewritten, a(0) added by R. J. Mathar, Oct 16 2009

A207709 Floor((H(n) + exp(H(n))*log(H(n)))/sigma(n)), where H(n) is the harmonic number sum_{i=1..n} 1/i.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 19 2012

Keywords

Comments

An assertion equivalent to the Riemann hypothesis is: a(n) > 0 for every n >= 1.
a(12*n) = 1 for all 1<=n<=43312.
For n >= 1, a(2^(10^n)) so far appears to equal floor(n*(exp(1)-2/3) - 1/3).
There exist integers n such that (H(n) + exp(H(n))*log(H(n)))/sigma(n) < 1.01 (i.e., n = 100630609505753353981293837481689271234222794240000*1087#). See A215640 for information on how to generate these numbers. - Arkadiusz Wesolowski, Aug 19 2012

Examples

			a(11) = 2 because (H(11) + exp(1)^H(11)*log(H(11)))/sigma(11) = 2.1387006307....
		

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[h = NIntegrate[(1 - x^n)/(1 - x), {x, 0, 1}]; AppendTo[lst, Floor[(h + Exp@h*Log@h)/DivisorSigma[1, n]]], {n, 530}]; lst

A257391 Numbers of the form 4^p*(4^p+1)*(2^p-1) with p an odd prime.

Original entry on oeis.org

29120, 32537600, 34093383680, 36011213418659840, 36888985097480437760, 38685331082014736871587840, 39614005699412557795646504960, 41538369916519054182462860998737920, 44601490313984496701256699111250939955118080, 45671926145323068271210017365594287580527984640
Offset: 1

Views

Author

Danny Rorabaugh, Apr 21 2015

Keywords

Comments

5 divides (4^m+1) for odd m, so every term in this sequence is a multiple of 5 (A008587).
A064487(k) = 4^(2k+1)*(4^(2k+1)+1)*(2^(2k+1)-1), so this sequence is a subsequence of A064487.
Every non-solvable number (A056866) is divisible by 12 or 20. All non-solvable numbers not divisible by 12 (A008594) are divisible by a member of this sequence. In particular, every primitive non-solvable number (A257146) not divisible by 12 is in this sequence.
All terms are divisible by 320 and have at least 4 distinct prime factors. - Jianing Song, Apr 04 2022

References

Crossrefs

Subsequence of A008587, A008602, A056866, and A064487.

Programs

  • Mathematica
    Table[4^p (4^p+1)(2^p-1),{p,Prime[Range[2,20]]}] (* Harvey P. Dale, Jul 17 2024 *)
  • PARI
    a(n)=my(p=prime(n+1)); 4^p*(4^p+1)*(2^p-1) \\ Charles R Greathouse IV, Apr 21 2015
  • Sage
    [4^nth_prime(n)*(4^nth_prime(n)+1)*(2^nth_prime(n)-1) for n in range(2,12)]
    

Formula

a(n) = 4^p*(4^p+1)*(2^p-1) where p = A065091(n) = A000040(n+1).

A166873 a(n) = a(n-1) + 12*n for n > 1; a(1) = 1.

Original entry on oeis.org

1, 25, 61, 109, 169, 241, 325, 421, 529, 649, 781, 925, 1081, 1249, 1429, 1621, 1825, 2041, 2269, 2509, 2761, 3025, 3301, 3589, 3889, 4201, 4525, 4861, 5209, 5569, 5941, 6325, 6721, 7129, 7549, 7981, 8425, 8881, 9349, 9829, 10321, 10825, 11341, 11869
Offset: 1

Views

Author

Klaus Brockhaus, Oct 22 2009

Keywords

Comments

Binomial transform of 1,24,12,0,0,0,....

Crossrefs

Cf. A008594 (multiples of 12).
A000217, A028387, A133694, A059993, A166137, A166143, A166146, A166147, A166148, A166150, A166144 have recurrence a(n-1)+k*n with a(1)=1 or a(0)=1 for k = 1..11 resp.

Programs

  • Magma
    [ n eq 1 select 1 else Self(n-1)+12*n: n in [1..44] ];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{1,25,61},50] (* G. C. Greubel, May 27 2016 *)
  • PARI
    a(n)=6*n^2+6*n-11 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 6*n^2 + 6*n - 11.
a(n) = 2*a(n-1) - a(n-2) + 12.
G.f.: x*(1 + 22*x - 11*x^2)/(1-x)^3.
a(n) - a(n-1) = A008594(n) for n > 1.
From G. C. Greubel, May 27 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: (-11 + 12*x + 6*x^2)*exp(x) + 11. (End)

A181475 a(n) = 3*n^4 + 6*n^3 - 3*n + 1.

Original entry on oeis.org

1, 7, 91, 397, 1141, 2611, 5167, 9241, 15337, 24031, 35971, 51877, 72541, 98827, 131671, 172081, 221137, 279991, 349867, 432061, 527941, 638947, 766591, 912457, 1078201, 1265551, 1476307, 1712341, 1975597, 2268091, 2591911, 2949217, 3342241, 3773287, 4244731
Offset: 0

Views

Author

Bruno Berselli, Oct 25 2010 - Oct 29 2010

Keywords

Comments

If gcd(n,7) = gcd(n+1,7) = gcd(2*n+1,7) = 1 then a(n) == 0 (mod 7) (E. Picutti, see References).

References

  • Ettore Picutti, Sul numero e la sua storia, Feltrinelli Economica, 1977, p. 208.

Crossrefs

Subsequence of A003215.

Programs

  • Magma
    [3*n^4+6*n^3-3*n+1: n in [0..31]];
  • Mathematica
    Table[3 n^4 + 6 n^3 - 3 n + 1, {n, 0, 40}] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,7,91,397,1141},40] (* Harvey P. Dale, Jul 12 2022 *)

Formula

G.f.: (1 + 2*x + 66*x^2 + 2*x^3 + x^4)/(1-x)^5.
a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 6*12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6*A008594(n-1).
a(n) = 2*a(n-1) - a(n-2) + 6*A003154(n).
a(n) = a(n-1) + 6*A007588(n).
a(n) = 1 + 6*A062392(n).
a(n) = 7*A000540(n)/A000330(n) = A154105(A000096(n-1)) for n > 0.
Sum_{i=0..n} a(i) = (3*n^5 + 15*n^4 + 20*n^3 - 3*n + 5)/5.
a(n) = 7*(3*n^2 + 3*n - 1)*(Sum_{k=1..n} k^6)/(5*Sum_{k=1..n} k^4), n > 0. - Gary Detlefs, Oct 18 2011

Extensions

Formula, program and crossref added by Bruno Berselli, Aug 22 2011

A246930 a(n) = prime(12*n).

Original entry on oeis.org

37, 89, 151, 223, 281, 359, 433, 503, 593, 659, 743, 827, 911, 997, 1069, 1163, 1249, 1321, 1439, 1511, 1601, 1693, 1783, 1877, 1987, 2069, 2143, 2267, 2347, 2423, 2543, 2657, 2713, 2801, 2903, 3011, 3119, 3221, 3323, 3413, 3527, 3607, 3697, 3797, 3907
Offset: 1

Views

Author

Vincenzo Librandi, Sep 08 2014

Keywords

Crossrefs

Cf. similar sequences listed in A246929.

Programs

  • Magma
    [NthPrime(12*n): n in [1..50]];
    
  • Maple
    A246930:=n->ithprime(12*n): seq(A246930(n), n=1..50); # Wesley Ivan Hurt, Sep 08 2014
  • Mathematica
    Prime[12 Range[50]]
  • PARI
    vector(60, i, prime(12*i)) \\ Michel Marcus, Sep 08 2014
  • Sage
    [nth_prime(12*n) for n in (1..50)] # Bruno Berselli, Sep 08 2014
    

Formula

a(n) = A000040(A008594(n)). - Wesley Ivan Hurt, Sep 08 2014

A272975 Numbers that are congruent to {0,7} mod 12.

Original entry on oeis.org

0, 7, 12, 19, 24, 31, 36, 43, 48, 55, 60, 67, 72, 79, 84, 91, 96, 103, 108, 115, 120, 127, 132, 139, 144, 151, 156, 163, 168, 175, 180, 187, 192, 199, 204, 211, 216, 223, 228, 235, 240, 247, 252, 259, 264, 271, 276, 283, 288, 295, 300, 307, 312, 319, 324
Offset: 1

Views

Author

Wesley Ivan Hurt, May 30 2016

Keywords

Comments

Numbers that are not congruent to {1, 2, 3, 4, 5, 6, 8, 9, 10, 11} mod 12.
Bisection of A083032.

Crossrefs

Programs

  • Magma
    [n : n in [0..400] | n mod 12 in [0, 7]];
    
  • Maple
    A272975:=n->(12*n-11+(-1)^n)/2: seq(A272975(n), n=1..100);
  • Mathematica
    Table[(12n - 11 + (-1)^n)/2, {n, 80}]
  • PARI
    concat(0, Vec(x^2*(7+5*x)/((x-1)^2*(x+1)) + O(x^99))) \\ Altug Alkan, May 31 2016

Formula

G.f.: x^2*(7+5*x) / ((x-1)^2*(x+1)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = (12*n - 11 + (-1)^n)/2.
a(2k) = A017605(k-1) k>0, a(2k-1) = A008594(k-1) k>0, a(2k)-a(2k-1) = 7.
a(n)-a(-n) = A008594(n) for n>0.
Sum_{i=1..n} a(2*i) = A049453(n) for n>0.
Sum_{i=1..n} a(2*i-1) = A049598(n-1) for n>0.
E.g.f.: 5 + ((12*x - 11)*exp(x) + exp(-x))/2. - David Lovler, Sep 04 2022
Sum_{n>=2} (-1)^n/a(n) = log(2)/4 + log(3)/8 - ((sqrt(3)-1)*Pi + 2*(sqrt(3)+3)*log(sqrt(3)+2))/(24*(sqrt(3)+1)). - Amiram Eldar, Sep 17 2023
Previous Showing 31-40 of 54 results. Next