A168186
Positive numbers that are not multiples of 12.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78
Offset: 1
156 is in A023805 but not in this sequence. - _Franklin T. Adams-Watters_, Jan 26 2010
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,1,-1).
A319073
Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 2, 4, 6, 3, 7, 8, 9, 4, 6, 14, 12, 12, 5, 12, 12, 21, 16, 15, 6, 8, 24, 18, 28, 20, 18, 7, 15, 16, 36, 24, 35, 24, 21, 8, 13, 30, 24, 48, 30, 42, 28, 24, 9, 18, 26, 45, 32, 60, 36, 49, 32, 27, 10, 12, 36, 39, 60, 40, 72, 42, 56, 36, 30, 11, 28, 24, 54, 52, 75, 48, 84, 48, 63, 40, 33, 12
Offset: 1
The corner of the square array begins:
A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528
A000027: 1, 2, 3, 4, 5, 6, 7, 8, ...
A008585: 3, 6, 9, 12, 15, 18, 21, 24, ...
A008586: 4, 8, 12, 16, 20, 24, 28, 32, ...
A008589: 7, 14, 21, 28, 35, 42, 49, 56, ...
A008588: 6, 12, 18, 24, 30, 36, 42, 48, ...
A008594: 12, 24, 36, 48, 60, 72, 84, 96, ...
A008590: 8, 16, 24, 32, 40, 48, 56, 64, ...
A008597: 15, 30, 45, 60, 75, 90, 105, 120, ...
A008595: 13, 26, 39, 52, 65, 78, 91, 104, ...
A008600: 18, 36, 54, 72, 90, 108, 126, 144, ...
...
Row n lists the multiples of
A000203(n).
Initial zeros should be omitted in the following sequences related to the rows of the array:
(Note that in the OEIS there are many other sequences that are also rows of this square array.)
-
T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # Muniru A Asiru, Jan 01 2019
-
with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # Muniru A Asiru, Jan 01 2019
-
Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)
A017522
a(n) = (12*n)^2.
Original entry on oeis.org
0, 144, 576, 1296, 2304, 3600, 5184, 7056, 9216, 11664, 14400, 17424, 20736, 24336, 28224, 32400, 36864, 41616, 46656, 51984, 57600, 63504, 69696, 76176, 82944, 90000, 97344, 104976, 112896, 121104, 129600, 138384, 147456, 156816, 166464, 176400, 186624, 197136
Offset: 0
-
[(12*n)^2: n in [0..35]]; // Vincenzo Librandi, Feb 10 2012
-
LinearRecurrence[{3, -3, 1}, {0, 144, 576}, 50] (* Vincenzo Librandi, Feb 10 2012 *)
(12 Range[0, 30])^2 (* Bruno Berselli, Feb 10 2012 *)
-
a(n)=(12*n)^2 \\ Charles R Greathouse IV, Jun 17 2017
A158547
a(n) = 24*n^2 + 1.
Original entry on oeis.org
1, 25, 97, 217, 385, 601, 865, 1177, 1537, 1945, 2401, 2905, 3457, 4057, 4705, 5401, 6145, 6937, 7777, 8665, 9601, 10585, 11617, 12697, 13825, 15001, 16225, 17497, 18817, 20185, 21601, 23065, 24577, 26137, 27745, 29401, 31105, 32857, 34657, 36505, 38401, 40345
Offset: 0
-
I:=[1, 25, 97]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 14 2012
-
LinearRecurrence[{3, -3, 1}, {1, 25, 97}, 50] (* Vincenzo Librandi, Feb 14 2012 *)
-
for(n=0, 40, print1(24*n^2+1", ")); \\ Vincenzo Librandi, Feb 14 2012
A207709
Floor((H(n) + exp(H(n))*log(H(n)))/sigma(n)), where H(n) is the harmonic number sum_{i=1..n} 1/i.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2
Offset: 1
a(11) = 2 because (H(11) + exp(1)^H(11)*log(H(11)))/sigma(11) = 2.1387006307....
-
lst = {}; Do[h = NIntegrate[(1 - x^n)/(1 - x), {x, 0, 1}]; AppendTo[lst, Floor[(h + Exp@h*Log@h)/DivisorSigma[1, n]]], {n, 530}]; lst
A257391
Numbers of the form 4^p*(4^p+1)*(2^p-1) with p an odd prime.
Original entry on oeis.org
29120, 32537600, 34093383680, 36011213418659840, 36888985097480437760, 38685331082014736871587840, 39614005699412557795646504960, 41538369916519054182462860998737920, 44601490313984496701256699111250939955118080, 45671926145323068271210017365594287580527984640
Offset: 1
-
Table[4^p (4^p+1)(2^p-1),{p,Prime[Range[2,20]]}] (* Harvey P. Dale, Jul 17 2024 *)
-
a(n)=my(p=prime(n+1)); 4^p*(4^p+1)*(2^p-1) \\ Charles R Greathouse IV, Apr 21 2015
-
[4^nth_prime(n)*(4^nth_prime(n)+1)*(2^nth_prime(n)-1) for n in range(2,12)]
A166873
a(n) = a(n-1) + 12*n for n > 1; a(1) = 1.
Original entry on oeis.org
1, 25, 61, 109, 169, 241, 325, 421, 529, 649, 781, 925, 1081, 1249, 1429, 1621, 1825, 2041, 2269, 2509, 2761, 3025, 3301, 3589, 3889, 4201, 4525, 4861, 5209, 5569, 5941, 6325, 6721, 7129, 7549, 7981, 8425, 8881, 9349, 9829, 10321, 10825, 11341, 11869
Offset: 1
A000217,
A028387,
A133694,
A059993,
A166137,
A166143,
A166146,
A166147,
A166148,
A166150,
A166144 have recurrence a(n-1)+k*n with a(1)=1 or a(0)=1 for k = 1..11 resp.
-
[ n eq 1 select 1 else Self(n-1)+12*n: n in [1..44] ];
-
LinearRecurrence[{3,-3,1},{1,25,61},50] (* G. C. Greubel, May 27 2016 *)
-
a(n)=6*n^2+6*n-11 \\ Charles R Greathouse IV, Jun 17 2017
A181475
a(n) = 3*n^4 + 6*n^3 - 3*n + 1.
Original entry on oeis.org
1, 7, 91, 397, 1141, 2611, 5167, 9241, 15337, 24031, 35971, 51877, 72541, 98827, 131671, 172081, 221137, 279991, 349867, 432061, 527941, 638947, 766591, 912457, 1078201, 1265551, 1476307, 1712341, 1975597, 2268091, 2591911, 2949217, 3342241, 3773287, 4244731
Offset: 0
- Ettore Picutti, Sul numero e la sua storia, Feltrinelli Economica, 1977, p. 208.
-
[3*n^4+6*n^3-3*n+1: n in [0..31]];
-
Table[3 n^4 + 6 n^3 - 3 n + 1, {n, 0, 40}] (* Vincenzo Librandi, Mar 26 2013 *)
LinearRecurrence[{5,-10,10,-5,1},{1,7,91,397,1141},40] (* Harvey P. Dale, Jul 12 2022 *)
A246930
a(n) = prime(12*n).
Original entry on oeis.org
37, 89, 151, 223, 281, 359, 433, 503, 593, 659, 743, 827, 911, 997, 1069, 1163, 1249, 1321, 1439, 1511, 1601, 1693, 1783, 1877, 1987, 2069, 2143, 2267, 2347, 2423, 2543, 2657, 2713, 2801, 2903, 3011, 3119, 3221, 3323, 3413, 3527, 3607, 3697, 3797, 3907
Offset: 1
Cf. similar sequences listed in
A246929.
A272975
Numbers that are congruent to {0,7} mod 12.
Original entry on oeis.org
0, 7, 12, 19, 24, 31, 36, 43, 48, 55, 60, 67, 72, 79, 84, 91, 96, 103, 108, 115, 120, 127, 132, 139, 144, 151, 156, 163, 168, 175, 180, 187, 192, 199, 204, 211, 216, 223, 228, 235, 240, 247, 252, 259, 264, 271, 276, 283, 288, 295, 300, 307, 312, 319, 324
Offset: 1
-
[n : n in [0..400] | n mod 12 in [0, 7]];
-
A272975:=n->(12*n-11+(-1)^n)/2: seq(A272975(n), n=1..100);
-
Table[(12n - 11 + (-1)^n)/2, {n, 80}]
-
concat(0, Vec(x^2*(7+5*x)/((x-1)^2*(x+1)) + O(x^99))) \\ Altug Alkan, May 31 2016
Comments