A317318
Multiples of 18 and odd numbers interleaved.
Original entry on oeis.org
0, 1, 18, 3, 36, 5, 54, 7, 72, 9, 90, 11, 108, 13, 126, 15, 144, 17, 162, 19, 180, 21, 198, 23, 216, 25, 234, 27, 252, 29, 270, 31, 288, 33, 306, 35, 324, 37, 342, 39, 360, 41, 378, 43, 396, 45, 414, 47, 432, 49, 450, 51, 468, 53, 486, 55, 504, 57, 522, 59, 540, 61, 558, 63, 576, 65, 594, 67, 612, 69
Offset: 0
-
a[n_] := If[OddQ[n], n, 9*n]; Array[a, 70, 0] (* Amiram Eldar, Oct 14 2023 *)
-
concat(0, Vec(x*(1 + 18*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018
A319073
Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 2, 4, 6, 3, 7, 8, 9, 4, 6, 14, 12, 12, 5, 12, 12, 21, 16, 15, 6, 8, 24, 18, 28, 20, 18, 7, 15, 16, 36, 24, 35, 24, 21, 8, 13, 30, 24, 48, 30, 42, 28, 24, 9, 18, 26, 45, 32, 60, 36, 49, 32, 27, 10, 12, 36, 39, 60, 40, 72, 42, 56, 36, 30, 11, 28, 24, 54, 52, 75, 48, 84, 48, 63, 40, 33, 12
Offset: 1
The corner of the square array begins:
A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528
A000027: 1, 2, 3, 4, 5, 6, 7, 8, ...
A008585: 3, 6, 9, 12, 15, 18, 21, 24, ...
A008586: 4, 8, 12, 16, 20, 24, 28, 32, ...
A008589: 7, 14, 21, 28, 35, 42, 49, 56, ...
A008588: 6, 12, 18, 24, 30, 36, 42, 48, ...
A008594: 12, 24, 36, 48, 60, 72, 84, 96, ...
A008590: 8, 16, 24, 32, 40, 48, 56, 64, ...
A008597: 15, 30, 45, 60, 75, 90, 105, 120, ...
A008595: 13, 26, 39, 52, 65, 78, 91, 104, ...
A008600: 18, 36, 54, 72, 90, 108, 126, 144, ...
...
Row n lists the multiples of
A000203(n).
Initial zeros should be omitted in the following sequences related to the rows of the array:
(Note that in the OEIS there are many other sequences that are also rows of this square array.)
-
T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # Muniru A Asiru, Jan 01 2019
-
with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # Muniru A Asiru, Jan 01 2019
-
Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)
A373599
Numbers k such that k and A327860(k) are both multiples of 3, where A327860 is the arithmetic derivative of the primorial base exp-function.
Original entry on oeis.org
0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 198, 222, 240, 258, 276, 294, 312, 330, 348, 366, 384, 402, 426, 444, 462, 480, 498, 516, 534, 552, 570, 588, 606, 624, 630, 648, 666, 684, 702, 720, 738, 756, 774, 792, 810, 828, 852, 870, 888, 906, 924, 942, 960, 978, 996, 1014, 1032, 1056, 1074, 1092, 1110, 1128
Offset: 1
18 = 3*6 is included, because also A327860(18) = 75 is a multiple of 3.
222 = 3*74 is included, because also A327860(222) = 135 is a multiple of 3.
240 = 3*80 is included, because also A327860(240) = 18 is a multiple of 3.
258 = 3*86 is included, because also A327860(258) = 8025 is a multiple of 3. Note that A049345(18) = 300, A049345(240) = 11000, and A049345(240+18) = 11300, so the sum in this case is carry-free (cf. the comment).
2556 = 3*852 is included, because also A327860(2556) = 2556 is a multiple of 3 (see also A328110 and A373144).
Indices of multiples of 3 in
A351083.
Differs from
A008600 (multiples of 18) for the first time at a(13) = 222, which is not a multiple of 18.
Original entry on oeis.org
18, 18, 18, 54, 18, 18, 18, 72, 18, 36, 18, 36, 36, 18, 18, 72, 18, 54, 36, 18, 36, 90, 18, 36, 90, 54, 36, 36, 18, 18, 54, 90, 36, 54, 18, 18, 54, 36, 18, 54, 18, 54, 18, 36, 90, 36, 54, 36, 54, 36, 18, 18, 54, 36, 72, 18, 108, 36, 36, 72, 18, 18, 126, 36, 54, 54, 54, 36, 126
Offset: 1
A194272
Array T(n,k) with 6 columns read by rows in which row n lists 3*n-2, 3*n-1, 3*n, 3*n, 3*n, 3*n.
Original entry on oeis.org
1, 2, 3, 3, 3, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 13, 14, 15, 15, 15, 15, 16, 17, 18, 18, 18, 18, 19, 20, 21, 21, 21, 21, 22, 23, 24, 24, 24, 24, 25, 26, 27, 27, 27, 27, 28, 29, 30, 30, 30, 30, 31, 32, 33, 33, 33, 33, 34, 35, 36, 36, 36, 36
Offset: 1
Array begins:
1, 2, 3, 3, 3, 3,
4, 5, 6, 6, 6, 6,
7, 8, 9, 9, 9, 9,
10, 11, 12, 12, 12, 12,
13, 14, 15, 15, 15, 15,
16, 17, 18, 18, 18, 18,
19, 20, 21, 21, 21, 21,
22, 23, 24, 24, 24, 24,
...
Sum of row n gives 18*n-3 = A008600(n) - 3.
G.f. = x + 2*x^2 + 3*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + ...
-
[Floor((n+3)/6) + Floor((n+4)/6) + Floor((n+5)/6) : n in [1..100]]; // Wesley Ivan Hurt, Apr 04 2015
-
A194272:=n->floor((n+3)/6) + floor((n+4)/6) + floor((n+5)/6): seq(A194272(n), n=1..100); # Wesley Ivan Hurt, Apr 04 2015
-
Table[Floor[(n + 3)/6] + Floor[(n + 4)/6] + Floor[(n + 5)/6], {n, 100}] (* Wesley Ivan Hurt, Apr 04 2015 *)
-
x='x+O('x^60); Vec(x*(1-x^3)/((1-x)^2*(1-x^6))) \\ G. C. Greubel, Aug 13 2018
A350522
a(n) = 18*n + 16.
Original entry on oeis.org
16, 34, 52, 70, 88, 106, 124, 142, 160, 178, 196, 214, 232, 250, 268, 286, 304, 322, 340, 358, 376, 394, 412, 430, 448, 466, 484, 502, 520, 538, 556, 574, 592, 610, 628, 646, 664, 682, 700, 718, 736, 754, 772, 790, 808, 826, 844, 862, 880, 898, 916, 934, 952, 970
Offset: 0
-
List([0..53], n-> 18*n+16)
-
[18*n+16: n in [0..53]];
-
seq(18*n+16, n=0..53);
-
Table[18n+16, {n, 0, 53}]
-
makelist(18*n+16, n, 0, 53);
-
a(n)=18*n+16
-
[18*n+16 for n in range(53)]
A383488
Numbers k that have at least one divisor d_i(k) for which a divisor d_j(k) exists such that d_i(k) < d_j(k) < sigma(d_i(k)).
Original entry on oeis.org
12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 160, 162, 168, 170, 174, 176, 180, 186, 189, 192, 196, 198, 200, 204, 208, 210, 216
Offset: 1
All multiples of 12 (A008594) are terms because 12 has the divisors 4 and 6 where sigma(4) = 7 > 6.
All multiples of 18 (A008600) are terms because 18 has the divisors 6 and 9 where sigma(6) = 12 > 9.
All multiples of 20 (A008602) are terms because 20 has the divisors 4 and 5 where sigma(4) = 7 > 5.
-
with(NumberTheory):
A383488:=proc(n)
option remember;
local k,i,L;
if n=1 then
12
else
for k from procname(n-1)+1 do
L:=Divisors(k);
for i to nops(L)-1 do
if sigma(L[i])>L[i+1] then
return k
fi
od
od
fi;
end proc;
seq(A383488(n),n=1..57);
A334403
Harshad numbers with sum of digits equal to 18.
Original entry on oeis.org
198, 288, 378, 396, 468, 486, 558, 576, 594, 648, 666, 684, 738, 756, 774, 792, 828, 846, 864, 882, 918, 936, 954, 972, 990, 1098, 1188, 1278, 1296, 1368, 1386, 1458, 1476, 1494, 1548, 1566, 1584, 1638, 1656, 1674, 1692, 1728, 1746, 1764, 1782, 1818, 1836, 1854
Offset: 1
-
filter:= n -> convert(convert(n,base,10),`+`) = 18:
select(filter, [seq(i,i=18...4000, 18)]); # Robert Israel, Mar 26 2023
-
Select[18 * Range[100], Plus @@ IntegerDigits[#] == 18 &] (* Amiram Eldar, Sep 08 2020 *)
-
isok(m) = my(s=sumdigits(m)); (s==18) && !(m%s); \\ Michel Marcus, Sep 08 2020
-
first(n) = {my(res = vector(n), t = 0); forstep(i = 18, oo, 18, if(vecsum(digits(i)) == 18, t++; res[t] = i; if(t >= n, return(res) ) ) ) } \\ David A. Corneth, Sep 08 2020
A350521
a(n) = 18*n + 4.
Original entry on oeis.org
4, 22, 40, 58, 76, 94, 112, 130, 148, 166, 184, 202, 220, 238, 256, 274, 292, 310, 328, 346, 364, 382, 400, 418, 436, 454, 472, 490, 508, 526, 544, 562, 580, 598, 616, 634, 652, 670, 688, 706, 724, 742, 760, 778, 796, 814, 832, 850, 868, 886, 904, 922, 940, 958
Offset: 0
-
List([0..53], n-> 18*n+4)
-
[18*n+4: n in [0..53]];
-
seq(18*n+4, n=0..53);
-
Table[18n+4, {n, 0, 53}]
-
makelist(18*n+4, n, 0, 53);
-
a(n)=18*n+4
-
[18*n+4 for n in range(53)]
A217591
Absolute differences between emirps (A006567) and their reversals.
Original entry on oeis.org
18, 54, 18, 36, 54, 36, 18, 18, 594, 198, 792, 594, 594, 792, 792, 198, 396, 396, 594, 594, 594, 198, 396, 198, 396, 594, 594, 198, 198, 198, 792, 594, 198, 792, 594, 792, 7992, 180, 270, 2268, 540, 8532, 810, 6804, 1908, 7902, 360, 2358, 630, 2718, 180, 1908, 5904, 1998, 7992, 90, 6084, 8172, 8262, 8442
Offset: 1
a(1) = absolute value of first emirp versus its reversal = |13 - 31| = |-18| = 18.
a(2) = |17 - 71| = |-54| = 54.
a(3) = |31 - 13| = |18| = 18.
a(4) = |37 - 73| = |-36| = 36.
-
R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
q:= n-> isprime(n) and (p-> p<>n and isprime(p))(R(n)):
map(x-> abs(x-R(x)), select(q, [$2..1280]))[]; # Alois P. Heinz, Jul 12 2024
Comments