cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A317318 Multiples of 18 and odd numbers interleaved.

Original entry on oeis.org

0, 1, 18, 3, 36, 5, 54, 7, 72, 9, 90, 11, 108, 13, 126, 15, 144, 17, 162, 19, 180, 21, 198, 23, 216, 25, 234, 27, 252, 29, 270, 31, 288, 33, 306, 35, 324, 37, 342, 39, 360, 41, 378, 43, 396, 45, 414, 47, 432, 49, 450, 51, 468, 53, 486, 55, 504, 57, 522, 59, 540, 61, 558, 63, 576, 65, 594, 67, 612, 69
Offset: 0

Views

Author

Omar E. Pol, Jul 25 2018

Keywords

Comments

Partial sums give the generalized 22-gonal numbers (A303299).
a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 22-gonal numbers.

Crossrefs

Cf. A008600 and A005408 interleaved.
Column 18 of A195151.
Sequences whose partial sums give the generalized k-gonal numbers: A026741 (k=5), A001477 (k=6), zero together with A080512 (k=7), A022998 (k=8), A195140 (k=9), zero together with A165998 (k=10), A195159 (k=11), A195161 (k=12), A195312 (k=13), A195817 (k=14).
Cf. A303299.

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n, 9*n]; Array[a, 70, 0] (* Amiram Eldar, Oct 14 2023 *)
  • PARI
    concat(0, Vec(x*(1 + 18*x + x^2) / ((1 - x)^2*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jul 29 2018

Formula

a(2n) = 18*n, a(2n+1) = 2*n + 1.
From Colin Barker, Jul 29 2018: (Start)
G.f.: x*(1 + 18*x + x^2) / ((1 - x)^2*(1 + x)^2).
a(n) = 2*a(n-2) - a(n-4) for n>3. (End)
Multiplicative with a(2^e) = 9*2^e, and a(p^e) = p^e for an odd prime p. - Amiram Eldar, Oct 14 2023
Dirichlet g.f.: zeta(s-1) * (1 + 2^(4-s)). - Amiram Eldar, Oct 25 2023

A319073 Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 2, 4, 6, 3, 7, 8, 9, 4, 6, 14, 12, 12, 5, 12, 12, 21, 16, 15, 6, 8, 24, 18, 28, 20, 18, 7, 15, 16, 36, 24, 35, 24, 21, 8, 13, 30, 24, 48, 30, 42, 28, 24, 9, 18, 26, 45, 32, 60, 36, 49, 32, 27, 10, 12, 36, 39, 60, 40, 72, 42, 56, 36, 30, 11, 28, 24, 54, 52, 75, 48, 84, 48, 63, 40, 33, 12
Offset: 1

Views

Author

Omar E. Pol, Sep 22 2018

Keywords

Examples

			The corner of the square array begins:
         A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528
A000027:       1,      2,      3,      4,      5,      6,      7,      8, ...
A008585:       3,      6,      9,     12,     15,     18,     21,     24, ...
A008586:       4,      8,     12,     16,     20,     24,     28,     32, ...
A008589:       7,     14,     21,     28,     35,     42,     49,     56, ...
A008588:       6,     12,     18,     24,     30,     36,     42,     48, ...
A008594:      12,     24,     36,     48,     60,     72,     84,     96, ...
A008590:       8,     16,     24,     32,     40,     48,     56,     64, ...
A008597:      15,     30,     45,     60,     75,     90,    105,    120, ...
A008595:      13,     26,     39,     52,     65,     78,     91,    104, ...
A008600:      18,     36,     54,     72,     90,    108,    126,    144, ...
...
		

Crossrefs

Another version of A274824.
Antidiagonal sums give A175254.
Main diagonal gives A064987.
Row n lists the multiples of A000203(n).
Row 1 is A000027.
Initial zeros should be omitted in the following sequences related to the rows of the array:
Rows 6 and 11: A008594.
Rows 7-9: A008590, A008597, A008595.
Rows 10 and 17: A008600.
Rows 12-13: A135628, A008596.
Rows 14, 15 and 23: A008606.
Rows 16 and 25: A135631.
(Note that in the OEIS there are many other sequences that are also rows of this square array.)

Programs

  • GAP
    T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # Muniru A Asiru, Jan 01 2019
  • Maple
    with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # Muniru A Asiru, Jan 01 2019
  • Mathematica
    Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)

A373599 Numbers k such that k and A327860(k) are both multiples of 3, where A327860 is the arithmetic derivative of the primorial base exp-function.

Original entry on oeis.org

0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 198, 222, 240, 258, 276, 294, 312, 330, 348, 366, 384, 402, 426, 444, 462, 480, 498, 516, 534, 552, 570, 588, 606, 624, 630, 648, 666, 684, 702, 720, 738, 756, 774, 792, 810, 828, 852, 870, 888, 906, 924, 942, 960, 978, 996, 1014, 1032, 1056, 1074, 1092, 1110, 1128
Offset: 1

Views

Author

Antti Karttunen, Jun 18 2024

Keywords

Comments

If x and y are terms and if A329041(x,y) = 1 (i.e., when adding x and y together will not generate any carries in the primorial base), then x+y is also a term. This follows from the quasi-exponential nature of A276086 and because A373144 is a multiplicative semigroup.

Examples

			18 = 3*6 is included, because also A327860(18) = 75 is a multiple of 3.
222 = 3*74 is included, because also A327860(222) = 135 is a multiple of 3.
240 = 3*80 is included, because also A327860(240) = 18 is a multiple of 3.
258 = 3*86 is included, because also A327860(258) = 8025 is a multiple of 3. Note that A049345(18) = 300, A049345(240) = 11000, and A049345(240+18) = 11300, so the sum in this case is carry-free (cf. the comment).
2556 = 3*852 is included, because also A327860(2556) = 2556 is a multiple of 3 (see also A328110 and A373144).
		

Crossrefs

Cf. A049345, A276086, A327860, A329041, A373598 (characteristic function).
Indices of multiples of 3 in A351083.
Intersection of A008585 and A369654.
Differs from A008600 (multiples of 18) for the first time at a(13) = 222, which is not a multiple of 18.
Cf. also A373144.

Programs

A158910 First Differences of A061240.

Original entry on oeis.org

18, 18, 18, 54, 18, 18, 18, 72, 18, 36, 18, 36, 36, 18, 18, 72, 18, 54, 36, 18, 36, 90, 18, 36, 90, 54, 36, 36, 18, 18, 54, 90, 36, 54, 18, 18, 54, 36, 18, 54, 18, 54, 18, 36, 90, 36, 54, 36, 54, 36, 18, 18, 54, 36, 72, 18, 108, 36, 36, 72, 18, 18, 126, 36, 54, 54, 54, 36, 126
Offset: 1

Views

Author

Paul Curtz, Mar 30 2009

Keywords

Comments

Since A061240 contains prime numbers of the form 9k+5, k even, all numbers here are multiples of 18.

Crossrefs

Cf. A008600.

Programs

  • Mathematica
    Differences[Select[Prime[Range[500]],Mod[#,9]==5&]] (* Harvey P. Dale, May 19 2018 *)

Extensions

Edited and extended by R. J. Mathar, Apr 03 2009

A194272 Array T(n,k) with 6 columns read by rows in which row n lists 3*n-2, 3*n-1, 3*n, 3*n, 3*n, 3*n.

Original entry on oeis.org

1, 2, 3, 3, 3, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 13, 14, 15, 15, 15, 15, 16, 17, 18, 18, 18, 18, 19, 20, 21, 21, 21, 21, 22, 23, 24, 24, 24, 24, 25, 26, 27, 27, 27, 27, 28, 29, 30, 30, 30, 30, 31, 32, 33, 33, 33, 33, 34, 35, 36, 36, 36, 36
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2011

Keywords

Comments

Also first differences of A194273 which is also a sequence related to cellular automata.

Examples

			Array begins:
1,  2,  3,  3,  3,  3,
4,  5,  6,  6,  6,  6,
7,  8,  9,  9,  9,  9,
10, 11, 12, 12, 12, 12,
13, 14, 15, 15, 15, 15,
16, 17, 18, 18, 18, 18,
19, 20, 21, 21, 21, 21,
22, 23, 24, 24, 24, 24,
...
Sum of row n gives 18*n-3 = A008600(n) - 3.
G.f. = x + 2*x^2 + 3*x^3 + 3*x^4 + 3*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + ...
		

Crossrefs

Column 1: A016777. Column 2: A016789. Every column 3, 4, 5 and 6: positive integers of A008585.

Programs

  • Magma
    [Floor((n+3)/6) + Floor((n+4)/6) + Floor((n+5)/6) : n in [1..100]]; // Wesley Ivan Hurt, Apr 04 2015
    
  • Maple
    A194272:=n->floor((n+3)/6) + floor((n+4)/6) + floor((n+5)/6): seq(A194272(n), n=1..100); # Wesley Ivan Hurt, Apr 04 2015
  • Mathematica
    Table[Floor[(n + 3)/6] + Floor[(n + 4)/6] + Floor[(n + 5)/6], {n, 100}] (* Wesley Ivan Hurt, Apr 04 2015 *)
  • PARI
    x='x+O('x^60); Vec(x*(1-x^3)/((1-x)^2*(1-x^6))) \\ G. C. Greubel, Aug 13 2018

Formula

From Michael Somos, May 12 2014: (Start)
Euler transform of length 6 sequence [2, 0, -1, 0, 0, 1].
G.f.: x * (1-x^3) / ( (1-x)^2 * (1-x^6) ).
a(n-1) = A047926(n) - A132868(n). (End)
From Wesley Ivan Hurt, Apr 04 2015, Sep 08 2015: (Start)
a(n) = 2*a(n-1)-a(n-2)-a(n-3)+2*a(n-4)-a(n-5), n>5.
a(n) = floor((n+3)/6) + floor((n+4)/6) + floor((n+5)/6).
a(n) = Sum_{i=0..n-1} floor(i/6) - floor((i-3)/6). (End)

A350522 a(n) = 18*n + 16.

Original entry on oeis.org

16, 34, 52, 70, 88, 106, 124, 142, 160, 178, 196, 214, 232, 250, 268, 286, 304, 322, 340, 358, 376, 394, 412, 430, 448, 466, 484, 502, 520, 538, 556, 574, 592, 610, 628, 646, 664, 682, 700, 718, 736, 754, 772, 790, 808, 826, 844, 862, 880, 898, 916, 934, 952, 970
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2022

Keywords

Comments

Sixth column of A006370 (the Collatz or 3x+1 map) when it is interpreted as a rectangular array with six columns read by rows.

Crossrefs

Programs

  • GAP
    List([0..53], n-> 18*n+16)
    
  • Magma
    [18*n+16: n in [0..53]];
    
  • Maple
    seq(18*n+16, n=0..53);
  • Mathematica
    Table[18n+16, {n, 0, 53}]
  • Maxima
    makelist(18*n+16, n, 0, 53);
    
  • PARI
    a(n)=18*n+16
    
  • Python
    [18*n+16 for n in range(53)]

Formula

a(n) = A239129(n+1) - 1.
From Stefano Spezia, Jan 04 2022: (Start)
O.g.f.: 2*(8 + x)/(1 - x)^2.
E.g.f.: 2*exp(x)*(8 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)
a(n) = 3*A008588(n+1) - 2. - Leo Tavares, Sep 14 2022
From Elmo R. Oliveira, Apr 12 2024: (Start)
a(n) = 2*A017257(n) = A006370(A016969(n)).
a(n) = 2*(A062728(n+1) - A062728(n)). (End)

A383488 Numbers k that have at least one divisor d_i(k) for which a divisor d_j(k) exists such that d_i(k) < d_j(k) < sigma(d_i(k)).

Original entry on oeis.org

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 160, 162, 168, 170, 174, 176, 180, 186, 189, 192, 196, 198, 200, 204, 208, 210, 216
Offset: 1

Views

Author

Felix Huber, May 03 2025

Keywords

Comments

Numbers k (without multiplicity) that are multiples of lcm(c,i), where c is any composite and i is any integer from [c + 1, sigma(c) - 1].

Examples

			All multiples of 12 (A008594) are terms because 12 has the divisors 4 and 6 where sigma(4) = 7 > 6.
All multiples of 18 (A008600) are terms because 18 has the divisors 6 and 9 where sigma(6) = 12 > 9.
All multiples of 20 (A008602) are terms because 20 has the divisors 4 and 5 where sigma(4) = 7 > 5.
		

Crossrefs

Programs

  • Maple
    with(NumberTheory):
    A383488:=proc(n)
        option remember;
        local k,i,L;
        if n=1 then
            12
        else
            for k from procname(n-1)+1 do
                L:=Divisors(k);
                for i to nops(L)-1 do
                    if sigma(L[i])>L[i+1] then
                        return k
                    fi
                od
            od
        fi;
    end proc;
    seq(A383488(n),n=1..57);

A334403 Harshad numbers with sum of digits equal to 18.

Original entry on oeis.org

198, 288, 378, 396, 468, 486, 558, 576, 594, 648, 666, 684, 738, 756, 774, 792, 828, 846, 864, 882, 918, 936, 954, 972, 990, 1098, 1188, 1278, 1296, 1368, 1386, 1458, 1476, 1494, 1548, 1566, 1584, 1638, 1656, 1674, 1692, 1728, 1746, 1764, 1782, 1818, 1836, 1854
Offset: 1

Views

Author

Davide Rotondo, Sep 08 2020

Keywords

Comments

Even numbers with sum of digits equal to 18 are Harshad numbers (A005349).
If k is a term, then so is 10*k. - Robert Israel, Mar 26 2023

Examples

			198/18 = 11.
		

Crossrefs

Intersection of A005349 and A235228.
Subsequence of A008600.
Cf. A002998.

Programs

  • Maple
    filter:= n -> convert(convert(n,base,10),`+`) = 18:
    select(filter, [seq(i,i=18...4000, 18)]); # Robert Israel, Mar 26 2023
  • Mathematica
    Select[18 * Range[100], Plus @@ IntegerDigits[#] == 18 &] (* Amiram Eldar, Sep 08 2020 *)
  • PARI
    isok(m) = my(s=sumdigits(m)); (s==18) && !(m%s); \\ Michel Marcus, Sep 08 2020
    
  • PARI
    first(n) = {my(res = vector(n), t = 0); forstep(i = 18, oo, 18, if(vecsum(digits(i)) == 18, t++; res[t] = i; if(t >= n, return(res) ) ) ) } \\ David A. Corneth, Sep 08 2020

Extensions

More terms from Michel Marcus, Sep 08 2020

A350521 a(n) = 18*n + 4.

Original entry on oeis.org

4, 22, 40, 58, 76, 94, 112, 130, 148, 166, 184, 202, 220, 238, 256, 274, 292, 310, 328, 346, 364, 382, 400, 418, 436, 454, 472, 490, 508, 526, 544, 562, 580, 598, 616, 634, 652, 670, 688, 706, 724, 742, 760, 778, 796, 814, 832, 850, 868, 886, 904, 922, 940, 958
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2022

Keywords

Comments

Second column of A006370 (the Collatz or 3x+1 map) when it is interpreted as a rectangular array with six columns read by rows.

Crossrefs

Programs

  • GAP
    List([0..53], n-> 18*n+4)
    
  • Magma
    [18*n+4: n in [0..53]];
    
  • Maple
    seq(18*n+4, n=0..53);
  • Mathematica
    Table[18n+4, {n, 0, 53}]
  • Maxima
    makelist(18*n+4, n, 0, 53);
    
  • PARI
    a(n)=18*n+4
    
  • Python
    [18*n+4 for n in range(53)]

Formula

a(n) = A242215(n) - 1.
a(n) = A298035(n+1) + 1.
From Elmo R. Oliveira, Apr 08 2024: (Start)
G.f.: 2*(2+7*x)/(1-x)^2.
E.g.f.: 2*exp(x)*(2 + 9*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 2*A017185(n) = A006370(A016921(n)). (End)

A217591 Absolute differences between emirps (A006567) and their reversals.

Original entry on oeis.org

18, 54, 18, 36, 54, 36, 18, 18, 594, 198, 792, 594, 594, 792, 792, 198, 396, 396, 594, 594, 594, 198, 396, 198, 396, 594, 594, 198, 198, 198, 792, 594, 198, 792, 594, 792, 7992, 180, 270, 2268, 540, 8532, 810, 6804, 1908, 7902, 360, 2358, 630, 2718, 180, 1908, 5904, 1998, 7992, 90, 6084, 8172, 8262, 8442
Offset: 1

Views

Author

Jonathan Vos Post, Oct 07 2012

Keywords

Comments

This is unsorted, and in order of appearance of emirps.
All values are multiples of 18 (A008600). - Charles R Greathouse IV, Oct 15 2012

Examples

			a(1) = absolute value of first emirp versus its reversal = |13 - 31| = |-18| = 18.
a(2) = |17 - 71| = |-54| = 54.
a(3) = |31 - 13| = |18| = 18.
a(4) = |37 - 73| = |-36| = 36.
		

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    q:= n-> isprime(n) and (p-> p<>n and isprime(p))(R(n)):
    map(x-> abs(x-R(x)), select(q, [$2..1280]))[];  # Alois P. Heinz, Jul 12 2024

Formula

a(n) = | A006567(n) - R(A006567(n)) | = | A006567(n) - A004086(A006567(n)) |.

Extensions

Corrected and more terms from Georg Fischer, Jul 12 2024
Previous Showing 11-20 of 25 results. Next