cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 41 results. Next

A175676 a(n) = binomial(n,3) mod n.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 7, 0, 0, 8, 0, 0, 9, 0, 0, 10, 0, 0, 11, 0, 0, 12, 0, 0, 13, 0, 0, 14, 0, 0, 15, 0, 0, 16, 0, 0, 17, 0, 0, 18, 0, 0, 19, 0, 0, 20, 0, 0, 21, 0, 0, 22, 0, 0, 23, 0, 0, 24, 0, 0, 25, 0, 0, 26, 0, 0, 27, 0, 0, 28, 0, 0, 29, 0, 0, 30, 0, 0, 31, 0
Offset: 1

Views

Author

Zak Seidov, Aug 07 2010

Keywords

Comments

Number of partitions of n+3 into 3 parts that are in arithmetic progression. - Wesley Ivan Hurt, Dec 07 2020

Crossrefs

Cf. A007290.

Programs

Formula

a(n) = n/3 if n==0 (mod 3) else a(n) = 0.
G.f.: x^3 / ( (x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, Mar 11 2011
a(n) = A008620(n-1)*A079978(n). - Bruno Berselli, Jun 22 2012
a(n) = (n + 2*n*cos((2*n*Pi)/3))/9. - Kritsada Moomuang, Apr 02 2018

A259094 From the Lecture Hall Theorem: array read by antidiagonals: T(n,k) = number of partitions of n into odd parts of size < 2k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 3, 4, 3, 1, 1, 1, 1, 2, 2, 3, 4, 4, 3, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 8, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2015

Keywords

Comments

The Lecture Hall Theorem states that (the number of partitions (d1,d2,...,dn) of m such that 0 <= d1/1 <= d2/2 <= ... <= dn/n) equals (the number of partitions of m into odd parts less than 2n).

Examples

			The array begins:
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ...
  1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14 ...
  1,1,1,2,2,3,4,4,5,6,7,8,9,10,11,13,14,15,17,18,20,22,23,25,27,29,31,33,35,37,40,42,44,47,49,52,55 ...
  1,1,1,2,2,3,4,5,6,7,9,10,12,14,16,19,21,24,27,30,34,38,42,46,51,56,61,67,73,79,86,93,100,108,116 ...
  1,1,1,2,2,3,4,5,6,8,10,11,14,16,19,23,26,30,35,40,45,52,58,65,74,82,91,102,113,124,138,151,165,182 ...
  1,1,1,2,2,3,4,5,6,8,10,12,15,17,21,25,29,34,40,46,53,62,70,80,91,103,116,131,147,164,184,204,227 ...
  1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,26,31,36,43,50,58,68,78,90,103,118,134,153,173,195,220,247,277 ...
  1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,27,32,37,45,52,61,72,83,96,111,128,146,168,191,217,247,279,314 ...
  ...
The successive antidiagonals are:
  [1]
  [1, 1]
  [1, 1, 1]
  [1, 1, 1, 1]
  [1, 1, 1, 2, 1]
  [1, 1, 1, 2, 2, 1]
  [1, 1, 1, 2, 2, 2, 1]
  [1, 1, 1, 2, 2, 3, 3, 1]
  [1, 1, 1, 2, 2, 3, 4, 3, 1]
  [1, 1, 1, 2, 2, 3, 4, 4, 3, 1]
  [1, 1, 1, 2, 2, 3, 4, 5, 5, 4, 1]
  [1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 4, 1]
  [1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 4, 1]
  [1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 8, 5, 1]
  ...
		

Crossrefs

Many rows of the array are already in the OEIS: A008620, A008672, A008673, A008674, A008675, A287997, A287998, A288000, A288001.

Programs

  • Maple
    G:=n->mul(1/(1-q^(2*i-1)),i=1..n);
    M:=41;
    G2:=n->seriestolist(series(G(n),q,M));
    for n from 1 to 10 do lprint(G2(n)); od:
    H:=n->[seq(G2(n-i+1)[i],i=1..n)];
    for n from 1 to 14 do lprint(H(n)); od:
  • Mathematica
    G[n_] := Product[1/(1-q^(2*i-1)), {i, 1, n}];
    M = 41;
    G2[n_] := CoefficientList[Series[G[n], {q, 0, M}], q];
    For[n = 1, n <= 10, n++; Print[G2[n]]];
    H[n_] := Table[G2[n-i+1][[i]], {i, 1, n}];
    Reap[For[n = 1, n <= 14, n++, Print[H[n]]; Sow[H[n]]]][[2, 1]] // Flatten (* Jean-François Alcover, Jun 04 2017, translated from Maple *)

A152828 Triangle read by rows, A007318 rows repeated three times .

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 5, 10, 10, 5, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 15, 20, 15, 6, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 7, 21
Offset: 0

Views

Author

Philippe Deléham, Dec 13 2008

Keywords

Comments

Diagonal sums : A079398 . Lengths of row are : 1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,... (A008620) .

Examples

			Triangle begins : 1 ; 1 ; 1 ; 1,1 ; 1,1 ; 1,1 ; 1,2,1 ; 1,2,1 ; 1,2,1 ; 1,3,3,1 ; 1,3,3,1 ; 1,3,3,1 ; 1,4,6,4,1 ; ...
		

Crossrefs

Programs

  • Mathematica
    {#,#,#}&/@Table[Binomial[n,k],{n,0,11},{k,0,n}]//Flatten (* Harvey P. Dale, Jul 22 2024 *)

A025767 Expansion of 1/((1-x)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 40, 43, 45, 48, 51, 54, 57, 60, 63, 67, 70, 73, 77, 81, 84, 88, 92, 96, 100, 104, 108, 113, 117, 121, 126, 131, 135, 140, 145, 150, 155, 160, 165, 171, 176, 181, 187, 193, 198
Offset: 0

Views

Author

Keywords

Comments

Apply the Riordan array (1/(1-x^4),x) to floor((n+3)/3). - Paul Barry, Jan 20 2006
Number of partitions of n into parts 1, 3, and 4. - David Neil McGrath, Aug 30 2014
Also, a(n-4) is equal to the number of partitions mu of n of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is odd or vice versa (see below example). - John M. Campbell, Jan 29 2016
With four 0's prepended and offset 0, a(n) is the number of partitions of n into four parts whose 2nd and 3rd largest parts are equal. - Wesley Ivan Hurt, Jan 05 2021

Examples

			The a(4)=3 partitions of 4 into parts 1, 3, and 4 are (4), (3,1), and (1,1,1,1). - _David Neil McGrath_, Aug 30 2014
From _John M. Campbell_, Jan 29 2016: (Start)
Letting n=12, there are a(n-4)=a(8)=6 partitions mu of n=12 of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is odd or vice versa:
(10,1,1) |- n
(8,3,1) |- n
(7,3,2) |- n
(6,5,1) |- n
(6,3,3) |- n
(5,5,2) |- n
(End)
		

Crossrefs

A008621(n) = A002265(n+4) = a(n) - a(n-3).

Programs

  • Magma
    [Floor(n^2/24 + n/3 + 1): n in [0..70]]; // Vincenzo Librandi, Aug 31 2014
  • Maple
    A056594 := proc(n) op(1+(n mod 4),[1,0,-1,0]) ; end proc:
    A061347 := proc(n) op(1+(n mod 3),[-2,1,1]) ; end proc:
    A025767 := proc(n) n^2/24+n/3+83/144+(-1)^n/16 +A061347(n+1)/9 +A056594(n)/4 ; end proc: # R. J. Mathar, Mar 31 2011
  • Mathematica
    Table[Floor[n^2/24 + n/3 + 1], {n, 0, 60}] (* Vincenzo Librandi, Aug 31 2014 *)
  • PARI
    a(n)=if(n<0,0,(n^2+8*n)\24+1)
    
  • PARI
    {a(n) = round( ((n + 4)^2 - 1) / 24 )}; /* Michael Somos, Nov 09 2007 */
    
  • PARI
    Vec(1/((1-x)*(1-x^3)*(1-x^4)) + O(x^80)) \\ Michel Marcus, Jan 29 2016
    

Formula

G.f.: 1/((1-x)*(1-x^3)*(1-x^4)).
a(n) = floor(n^2/24+n/3+1).
a(n) = Sum_{k=0..floor(n/4)} floor((n-4*k+3)/3). - Paul Barry, Jan 20 2006
Euler transform of length 4 sequence [1, 0, 1, 1]. - Michael Somos, Nov 09 2007
a(n) = a(-8 - n) for all n in Z. - Michael Somos, Nov 09 2007
a(n) = n^2/24 + n/3 + 83/144 + (-1)^n/16 + A061347(n+1)/9 + A056594(n)/4. - R. J. Mathar, Mar 31 2011
a(n) = a(n-1)+a(n-3)-a(n-5)-a(n-7)+a(n-8). - David Neil McGrath, Aug 30 2014
a(n) = Sum_{k=1..floor((n+4)/4)} Sum_{j=k..floor((n+4-k)/3)} Sum_{i=j..floor((n+4-j-k)/2)} [j = i], where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 17 2021
a(n)-a(n-1) = A008679(n). - R. J. Mathar, Jun 23 2021
a(n)-a(n-4) = A008620(n). - R. J. Mathar, Jun 23 2021

A246689 Expansion of e.g.f. 1/(1 - x^3)^(1 + 1/x + 1/x^2).

Original entry on oeis.org

1, 1, 3, 13, 61, 381, 2791, 22513, 210393, 2183401, 24575851, 305067621, 4097726293, 58876485253, 910581818511, 15005958062761, 261751577640241, 4844661893762193, 94564968066402643, 1938366513866527741, 41760228574294689261, 941821175462309114701
Offset: 0

Views

Author

Peter Bala, Sep 01 2014

Keywords

Comments

Compare with A193281.

Crossrefs

Programs

  • Maple
    seq(coeftayl(n!/(1-x^3)^(1+1/x+1/x^2), x = 0, n), n = 0..10);
  • Mathematica
    CoefficientList[Series[1/(1 - x^3)^(1 + 1/x + 1/x^2), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 01 2014 *)
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(1/(1 - x^3)^(1 + 1/x + 1/x^2))) \\ Joerg Arndt, Sep 01 2014
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, j/((j+2)\3)*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Apr 30 2022

Formula

E.g.f.: A(x) = 1/(1 - x^3)^(1 + 1/x + 1/x^2) = exp( Sum_{n>=1} x^n/A008620(n-1) ) = 1 + x + 3*x^2/2! + 13*x^3/3! + 61*x^4/4! + ....
A(x) = Sum_{n>=0} (x^n/n!)*Product {k = 1..n} (1 + x + k*x^2).
It appears that a(n) == 1 (mod n*(n-1)).
a(n) ~ n! * (n^2 / 54) * (1 + 6*log(n)/n). - Vaclav Kotesovec, Sep 01 2014
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k/A008620(k-1) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 30 2022

A039946 Expansion of Molien series for 8-dimensional complex Clifford group of genus 3 and order 743178240.

Original entry on oeis.org

1, 1, 2, 5, 9, 16, 31, 53, 89, 152, 245, 384, 601, 911, 1351, 1986, 2856, 4037, 5653, 7791, 10592, 14268, 18990, 24999, 32643, 42218, 54112, 68869, 86971, 109014, 135812, 168101, 206769, 252990, 307849, 372616, 448934, 538348
Offset: 0

Views

Author

E. M. Rains

Keywords

Examples

			G.f. = 1 + x^8 + 2*x^16 + 5*x^24 + 9*x^32 + 16*x^40 + 31*x^48 + ...
		

Crossrefs

Programs

  • Maple
    f(x):= (1 +x^3 +3*x^4 +3*x^5 +6*x^6 +8*x^7 +12*x^8 +18*x^9 +25*x^10 +29*x^11 +40*x^12 +50*x^13 +58*x^14 +69*x^15 +80*x^16 +85*x^17 +96*x^18 +104*x^19 +107*x^20 +109*x^21 +112*x^22 +109*x^23+107*x^24 +104*x^25 +96*x^26 +85*x^27 +80*x^28 +69*x^29 +58*x^30 +50*x^31 +40*x^32 +29*x^33 +25*x^34 +18*x^35 +12*x^36 +8*x^37 +6*x^38 +3*x^39 +3*x^40 +x^41 +x^44) / ( (1-x)^2*(1-x^3)^4*(1-x^5)^2*(1 +x +2*x^3 +2*x^4 + x^5 +4*x^6 +2*x^7 +x^8 +5*x^9 +2*x^10 +2*x^11 +5*x^12 +x^13 +2*x^14 + 4*x^15 +x^16 +2*x^17 +2*x^18 +x^20 +x^21) ); seq(coeff(series(f(x), x, n+1), x, n), n = 0..40);
  • Mathematica
    CoefficientList[Series[(1+x^3+3*x^4+3*x^5+6*x^6+8*x^7+12*x^8+18*x^9+25*x^10 + 29*x^11+40*x^12+50*x^13+58*x^14+69*x^15+80*x^16+85*x^17+96*x^18+104*x^19 + 107*x^20+109*x^21+112*x^22+109*x^23+107*x^24+104*x^25+96*x^26+85*x^27+80*x^28 +69*x^29+58*x^30+50*x^31+40*x^32+29*x^33+25*x^34+18*x^35+12*x^36 + 8*x^37 + 6*x^38+3*x^39+3*x^40+x^41+x^44)/((1-x)^2*(1-x^3)^4*(1-x^5)^2*(1+x+2*x^3+2*x^4 +x^5+4*x^6+2*x^7+x^8+5*x^9+2*x^10+2*x^11+5*x^12+x^13+2*x^14+4*x^15+x^16+2*x^17 +2*x^18+x^20+x^21)), {x,0,40}], x] (* G. C. Greubel, Feb 01 2020 *)
    LinearRecurrence[{1,1,1,-2,-1,0,1,-1,1,0,0,-1,1,2,1,-3,-2,0,2,1,-1,0,0,-1,1,2,0,-2,-3,1,2,1,-1,0,0,1,-1,1,0,-1,-2,1,1,1,-1},{1,1,2,5,9,16,31,53,89,152,245,384,601,911,1351,1986,2856,4037,5653,7791,10592,14268,18990,24999,32643,42218,54112,68869,86971,109014,135812,168101,206769,252990,307849,372616,448934,538348,642630,764021,904658,1066943,1253876,1468340,1713529},40] (* Harvey P. Dale, Jul 04 2021 *)

Formula

G.f.: (1 +x^24 +3*x^32 +3*x^40 +6*x^48 +8*x^56 +12*x^64 +18*x^72 +25*x^80 +29*x^88 +40*x^96 +50*x^104 +58*x^112 +69*x^120 +80*x^128 +85*x^136 +96*x^144 +104*x^152 +107*x^160 +109*x^168 +112*x^176 +109*x^184 +107*x^192 +104*x^200 +96*x^208 +85*x^216 +80*x^224 +69*x^232 +58*x^240 +50*x^248 +40*x^256 +29*x^264 +25*x^272 +18*x^280 +12*x^288 +8*x^296 +6*x^304 +3*x^312 +3*x^320 +x^328 +x^352) / ( (1-x^8)^2*(1-x^24)^4*(1-x^40)^2*(1 +x^8 +2*x^24 +2*x^32 + x^40 +4*x^48 +2*x^56 +x^64 +5*x^72 +2*x^80 +2*x^88 +5*x^96 +x^104 +2*x^112 + 4*x^120 +x^128 +2*x^136 +2*x^144 +x^160 +x^168) ), nonzero terms.
G.f.: (1 +x^3 +3*x^4 +3*x^5 +6*x^6 +8*x^7 +12*x^8 +18*x^9 +25*x^10 +29*x^11 +40*x^12 +50*x^13 +58*x^14 +69*x^15 +80*x^16 +85*x^17 +96*x^18 +104*x^19 +107*x^20 +109*x^21 +112*x^22 +109*x^23+107*x^24 +104*x^25 +96*x^26 +85*x^27 +80*x^28 +69*x^29 +58*x^30 +50*x^31 +40*x^32 +29*x^33 +25*x^34 +18*x^35 +12*x^36 +8*x^37 +6*x^38 +3*x^39 +3*x^40 +x^41 +x^44) / ( (1-x)^2*(1-x^3)^4*(1-x^5)^2*(1 +x +2*x^3 +2*x^4 + x^5 +4*x^6 +2*x^7 +x^8 +5*x^9 +2*x^10 +2*x^11 +5*x^12 +x^13 +2*x^14 + 4*x^15 +x^16 +2*x^17 +2*x^18 +x^20 +x^21) ). - G. C. Greubel, Feb 01 2020

Extensions

Typo in reduced g.f.s. corrected by Georg Fischer, Apr 18 2020

A051354 Expansion of Molien series for 16-dimensional complex Clifford group of genus 4 and order 97029351014400.

Original entry on oeis.org

1, 1, 2, 7, 19, 52, 172, 550, 1782, 5845, 18508, 56345, 164157, 454518, 1196924, 3003750, 7198311, 16523847, 36447873, 77478005, 159172517, 316874035, 612729396, 1153359711, 2117566545, 3798941401, 6670327291, 11479693332, 19390588953, 32185179449, 52553840336
Offset: 0

Views

Author

Keywords

Comments

Oura gives an explicit formula for the Molien series that produces A027672; the present sequence is the subsequence formed from the terms whose exponents are multiples of 8 (that is, every other term of A027672). In other words, the present Molien series is (f(x)+f(z*x))/2, where z = exp(2*Pi*I/8) and f(x) is the Molien series for the group H_4 given explicitly by Oura in Theorem 4.1.

Examples

			1 + t^8 + 2*t^16 + 7*t^24 + 19*t^32 + 52*t^40 + 172*t^48 + ...
		

Crossrefs

Programs

  • Mathematica
    (* See link for Mathematica program. *)

Formula

a(n) = A027672(2*n).

Extensions

Edited by Georg Fischer, Jan 24 2021

A330779 Lexicographically earliest sequence of positive integers such that for any v > 0, the value v appears up to v times, and the associate function f defined by f(n) = Sum_{k = 1..n} a(k) * i^k for n >= 0 is injective (where i denotes the imaginary unit).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 4, 6, 5, 5, 6, 5, 5, 7, 6, 6, 7, 6, 6, 8, 7, 7, 7, 8, 7, 7, 8, 8, 8, 10, 9, 8, 8, 9, 8, 10, 10, 9, 11, 9, 9, 11, 9, 9, 10, 9, 9, 12, 10, 11, 11, 11, 12, 10, 13, 10, 10, 13, 10, 10, 12, 11, 11, 12, 11, 11, 11, 14, 11, 13, 12, 13
Offset: 1

Views

Author

Rémy Sigrist, Dec 31 2019

Keywords

Comments

The variant of this sequence where each value can only appear up to once, twice or three times corresponds to A000027, A008619 and A008620 respectively.
Graphically, the representation of f resembles a windmill; the variant of f where we allow the value v to appear 3*v times resembles a butterfly (see illustrations in Links section).

Examples

			The first terms, alongside the corresponding values of f(n), are:
  n   a(n)  f(n)
  --  ----  ------
   0  N/A        0
   1     1       i
   2     2    -2+i
   3     2    -2-i
   4     3     1-i
   5     3   1+2*i
   6     3  -2+2*i
   7     4  -2-2*i
   8     4   2-2*i
   9     4   2+2*i
  10     5  -3+2*i
  11     4  -3-2*i
  12     6   3-2*i
See also illustration in Links section.
		

Crossrefs

See A331002 and A331003 for the real and imaginary parts of f, respectively.
See A330780 for another variant.
Cf. A000265.

Programs

  • PARI
    See Links section.

A005041 A self-generating sequence.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 0

Views

Author

Keywords

Comments

See A008620 for run lengths: each k occurs A008620(k+2) times. - Reinhard Zumkeller, Mar 16 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005041 n = a005041_list !! n
    a005041_list = 1 : f 1 1 (tail ts) where
       f y i gs'@((j,a):gs) | i < j  = y : f y (i+1) gs'
                            | i == j = a : f a (i+1) gs
       ts = [(6*k + 3*k*(k-1) `div` 2 + r*(k+2), 3*k+r+1) |
             k <- [0..], r <- [0,1,2]]
    -- Reinhard Zumkeller, Mar 16 2012
  • Mathematica
    Table[n+1, {n, 0, 20}, {Ceiling[(n+1)/3]+1}] // Flatten (* Jean-François Alcover, Dec 10 2014 *)

Formula

For any k in {0, 1, 2, ...} and r in {0, 1, 2}, we have: if n = 6*k + (3/2)*k*(k-1) + r*(k+2), then a(n) = 3*k + r + 1. E.g., for k=3 and r=1, we have n = 6*3 + (3/2)*3*(3-1) + 1*(3+2) = 32 and so a(32) = 3*3 + 1 + 1 = 11. - Francois Jooste (phukraut(AT)hotmail.com), Mar 12 2002

Extensions

More terms from Samuel Hilliard (sam_spade1977(AT)hotmail.com), Apr 11 2004

A086161 Number of monomial ideals in two variables x, y that are Artinian, integrally closed, of colength n and contain x^2.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25
Offset: 0

Views

Author

Jan Snellman, Aug 25 2003

Keywords

Comments

Alternatively, "concave partitions" of n with at most 2 parts, where a concave partition is defined by demanding that the monomial ideal, generated by the monomials whose exponents do not lie in the Ferrers diagram of the partition, is integrally closed.

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley Publishing Company, 1976.
  • M. Paulsen and J. Snellman, Enumerativa egenskaper hos konkava partitioner (in Swedish), Department of Mathematics, Stockholm University.

Crossrefs

Programs

  • PARI
    Vec((1+x^2-x^3)/((1-x)*(1-x^3)) + O(x^80)) \\ Michel Marcus, May 22 2015

Formula

G.f.: (1 + x^2 - x^3)/((1 - x)*(1 - x^3)).
a(n) = A008620(n+1). - R. J. Mathar, Sep 12 2008
E.g.f.: (3*exp(x)*(3 + x) - 2*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Feb 11 2023
Previous Showing 11-20 of 41 results. Next