A265035
Coordination sequence of 2-uniform tiling {3.4.6.4, 4.6.12} with respect to a point of type 4.6.12.
Original entry on oeis.org
1, 3, 6, 9, 11, 14, 17, 21, 25, 28, 30, 32, 35, 39, 43, 46, 48, 50, 53, 57, 61, 64, 66, 68, 71, 75, 79, 82, 84, 86, 89, 93, 97, 100, 102, 104, 107, 111, 115, 118, 120, 122, 125, 129, 133, 136, 138, 140, 143, 147, 151, 154, 156, 158, 161, 165, 169, 172, 174, 176
Offset: 0
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See page 67, 4th row, 3rd tiling.
- Otto Krötenheerdt, Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene, I, II, III, Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math-Natur. Reihe, 18 (1969), 273-290; 19 (1970), 19-38 and 97-122. [Includes classification of 2-uniform tilings]
- Anton Shutov and Andrey Maleev, Coordination sequences of 2-uniform graphs, Z. Kristallogr., 235 (2020), 157-166.
- Joseph Myers, Table of n, a(n) for n = 0..20000
- Miguel Carlos Fernández-Cabo, Artisan Procedures to Generate Uniform Tilings, International Mathematical Forum, Vol. 9, 2014, no. 23, 1109-1130. [Background information]
- Brian Galebach, Collection of n-Uniform Tilings. See Number 1 from the list of 20 2-uniform tilings.
- Brian Galebach, The tiling {3.4.6.4, 4.6.12}, Number 1 from list of 20 2-uniform tilings. (From the previous link)
- Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
- Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
- Reticular Chemistry Structure Resource (RCSR), The krt tiling (or net)
- N. J. A. Sloane, Illustration of initial terms of A265035 (point of type 4.6.12)
- N. J. A. Sloane, Illustration of initial terms of A265036 (point of type 3.4.6.4)
- N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)
- Index entries for linear recurrences with constant coefficients, signature (3,-4,3,-1).
See
A265036 for the other type of point.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt
A265035,
A265036; #2 cph
A301287,
A301289; #3 krm
A301291,
A301293; #4 krl
A301298,
A298024; #5 krq
A301299,
A301301; #6 krs
A301674,
A301676; #7 krr
A301670,
A301672; #8 krk
A301291,
A301293; #9 krn
A301678,
A301680; #10 krg
A301682,
A301684; #11 bew
A008574,
A296910; #12 krh
A301686,
A301688; #13 krf
A301690,
A301692; #14 krd
A301694,
A219529; #15 krc
A301708,
A301710; #16 usm
A301712,
A301714; #17 krj
A219529,
A301697; #18 kre
A301716,
A301718; #19 krb
A301720,
A301722; #20 kra
A301724,
A301726.
-
LinearRecurrence[{3,-4,3,-1},{1,3,6,9,11,14,17,21,25},100] (* Paolo Xausa, Nov 15 2023 *)
A008579
Coordination sequence for planar net 3.6.3.6. Spherical growth function for a certain reflection group in plane.
Original entry on oeis.org
1, 4, 8, 14, 18, 22, 28, 30, 38, 38, 48, 46, 58, 54, 68, 62, 78, 70, 88, 78, 98, 86, 108, 94, 118, 102, 128, 110, 138, 118, 148, 126, 158, 134, 168, 142, 178, 150, 188, 158, 198, 166, 208, 174, 218, 182, 228, 190, 238, 198, 248, 206, 258, 214, 268, 222, 278
Offset: 0
- P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 161 (but beware errors).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Pierre de La Harpe, and P. I. Grigorchuk, Local convexity of the growth function of finitely generated groups and question 5.2 in the Kourovka Notebook, Algebra and Logic 37.6 (1998): 353-356.
- Jean-Guillaume Eon, Algebraic determination of generating functions for coordination sequences in crystal structures, Acta Cryst. A58 (2002), 47-53. See p. 51.
- Jean-Guillaume Eon, Topological density of nets: a direct calculation, Acta Crystallographica Section A (Foundations of Crystallography), A60 (2014), 7-18; DOI: 10.1107/S0108767303022037. See Section 5.
- Jean-Guillaume Eon, Symmetry and Topology: The 11 Uninodal Planar Nets Revisited, Symmetry, 10 (2018), 13 pages, doi:10.3390/sym10020035. See Section 4.
- Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
- Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
- Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.
- Tom Karzes, Tiling Coordination Sequences
- Reticular Chemistry Structure Resource, kgm
- Yuriy Sibirmovsky, Illustration of initial terms with densely packed circles.
- N. J. A. Sloane, Illustration of initial terms
- N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
-
a008579 0 = 1
a008579 1 = 4
a008579 n = (10 - 2*m) * n' + 8*m - 2 where (n',m) = divMod n 2
a008579_list = 1 : 4 : concatMap (\x -> map (* 2) [5*x-1,4*x+3]) [1..]
-- Reinhard Zumkeller, Nov 12 2012
-
f := n->if n mod 2 = 0 then 10*(n/2)-2 else 8*(n-1)/2+6 fi;
-
a[n_?EvenQ] := 10*n/2-2; a[n_?OddQ] := 8*(n-1)/2+6; a[0] = 1; a[1] = 4; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Nov 18 2011, after Maple *)
CoefficientList[Series[(1+2x)(1+2x+2x^2+2x^3-x^4)/(1-x^2)^2,{x,0,50}],x] (* or *) LinearRecurrence[{0,2,0,-1},{1,4,8,14,18,22},50] (* Harvey P. Dale, Sep 05 2018 *)
A250122
Coordination sequence for planar net 3.12.12.
Original entry on oeis.org
1, 3, 4, 6, 8, 12, 14, 15, 18, 21, 22, 24, 28, 30, 30, 33, 38, 39, 38, 42, 48, 48, 46, 51, 58, 57, 54, 60, 68, 66, 62, 69, 78, 75, 70, 78, 88, 84, 78, 87, 98, 93, 86, 96, 108, 102, 94, 105, 118, 111, 102, 114, 128, 120, 110, 123, 138, 129
Offset: 0
- Maurizio Paolini, Table of n, a(n) for n = 0..1021
- Agnes Azzolino, Regular and Semi-Regular Tessellation Paper, 2011.
- Agnes Azzolino, Illustration of 3.12.12 tiling [From previous link]
- Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
- Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also on arXiv, arXiv:1803.08530 [math.CO], 2018-2019. See section 10 The 3.12^2 tiling.
- Rostislav Grigorchuk and Cosmas Kravaris, On the growth of the wallpaper groups, arXiv:2012.13661 [math.GR], 2020. See section 4.6 p. 23.
- Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.
- Tom Karzes, Tiling Coordination Sequences
- Maurizio Paolini, C program for A250122
- Reticular Chemistry Structure Resource, hca
- N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
- Index entries for linear recurrences with constant coefficients, signature (2,-3,4,-3,2,-1).
-
Join[{1, 3, 4}, LinearRecurrence[{2, -3, 4, -3, 2, -1}, {6, 8, 12, 14, 15, 18}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
a(8) onwards from Maurizio Paolini and
Joseph Myers (independently), Nov 28 2014
A072154
Coordination sequence for the planar net 4.6.12.
Original entry on oeis.org
1, 3, 5, 7, 9, 12, 15, 17, 19, 21, 24, 27, 29, 31, 33, 36, 39, 41, 43, 45, 48, 51, 53, 55, 57, 60, 63, 65, 67, 69, 72, 75, 77, 79, 81, 84, 87, 89, 91, 93, 96, 99, 101, 103, 105, 108, 111, 113, 115, 117, 120, 123, 125, 127, 129, 132, 135, 137
Offset: 0
- A. V. Shutov, On the number of words of a given length in plane crystallographic groups (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 302 (2003), Anal. Teor. Chisel i Teor. Funkts. 19, 188--197, 203; translation in J. Math. Sci. (N.Y.) 129 (2005), no. 3, 3922-3926 [MR2023041]. See Table 1, line "p6m" (but beware typos).
- Sean A. Irvine, Table of n, a(n) for n = 0..999
- Joerg Arndt, The 4.6.12 planar net
- Agnes Azzolino, Regular and Semi-Regular Tessellation Paper, 2011.
- Agnes Azzolino, Larger illustration of 4.6.12 planar net [From previous link]
- M. E. Davis, Ordered porous materials for emerging applications, Nature, 417 (Jun 20 2002), 813-821 (gives structure).
- Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
- Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also on arXiv, arXiv:1803.08530 [math.CO], 2018-2019.
- Rostislav Grigorchuk and Cosmas Kravaris, On the growth of the wallpaper groups, arXiv:2012.13661 [math.GR], 2020. See section 4.7 p. 23.
- Branko Grünbaum and Geoffrey C. Shephard, Tilings by regular polygons, Mathematics Magazine, 50 (1977), 227-247.
- Sean A. Irvine, Java implementation with explicit counting
- Tom Karzes, Tiling Coordination Sequences
- Reticular Chemistry Structure Resource, fxt
- N. J. A. Sloane, AlPO_4-5 structure, after Davis
- N. J. A. Sloane, The uniform planar nets and their A-numbers [Annotated scanned figure from Gruenbaum and Shephard (1977)]
- N. J. A. Sloane, The subgraph H used in the proof of the formulas
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
-
Join[{1}, LinearRecurrence[{1, 0, 0, 0, 1, -1}, {3, 5, 7, 9, 12, 15}, 100]] (* Jean-François Alcover, Dec 13 2018 *)
Thanks to Darrah Chavey for pointing out that this is the planar net 4.6.12. -
N. J. A. Sloane, Nov 24 2014
A019557
Coordination sequence for G_2 lattice.
Original entry on oeis.org
1, 12, 30, 48, 66, 84, 102, 120, 138, 156, 174, 192, 210, 228, 246, 264, 282, 300, 318, 336, 354, 372, 390, 408, 426, 444, 462, 480, 498, 516, 534, 552, 570, 588, 606, 624, 642, 660, 678, 696, 714, 732, 750, 768, 786, 804, 822, 840, 858, 876, 894, 912, 930, 948, 966, 984, 1002, 1020, 1038, 1056
Offset: 0
Michael Baake (mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de)
From _Peter M. Chema_, Mar 20 2016: (Start)
Illustration of initial terms:
o
o o
o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o
o o
o
1 12 30 48
Compare to A003154, A045946, and A270700. (End)
- Michael Baake and Uwe Grimm, Coordination sequences for root lattices and related graphs, arXiv:cond-mat/9706122, Zeit. f. Kristallographie, 212 (1997), pp. 253-256
- Roland Bacher, Pierre de la Harpe, and Boris Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Séries 1) (1997), pp. 1137-1142.
- Roland Bacher, Pierre de la Harpe, and Boris Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, Annales de l'institut Fourier, 49 no. 3 (1999), pp. 727-762.
- Tom Karzes, Tiling Coordination Sequences.
- N. J. A. Sloane, Illustration of layers 0,1,2 in the graph of the Dual(3.12.12) tiling. Centered at a 12-valent node. Note that some of the blue edges are not part of the underlying graph.
- N. J. A. Sloane, Overview of coordination sequences of Laves tilings. [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
- Eric Weisstein's World of Mathematics, Andrásfai Graph.
- Eric Weisstein's World of Mathematics, Minimum Vertex Coloring.
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] =
A008486; [3.3.3.3.6] =
A298014,
A298015,
A298016; [3.3.3.4.4] =
A298022,
A298024; [3.3.4.3.4] =
A008574,
A296368; [3.6.3.6] =
A298026,
A298028; [3.4.6.4] =
A298029,
A298031,
A298033; [3.12.12] =
A019557,
A298035; [4.4.4.4] =
A008574; [4.6.12] =
A298036,
A298038,
A298040; [4.8.8] =
A022144,
A234275; [6.6.6] =
A008458.
-
CoefficientList[Series[(1 + 10 x + 7 x^2)/(1 - x)^2, {x, 0, 59}], x] (* Michael De Vlieger, Mar 21 2016 *)
-
my(x='x+O('x^100)); Vec((1+10*x+7*x^2)/(1-x)^2) \\ Altug Alkan, Mar 20 2016
A296368
Coordination sequence for the Cairo or dual-3.3.4.3.4 tiling with respect to a trivalent point.
Original entry on oeis.org
1, 3, 8, 12, 15, 20, 25, 28, 31, 36, 41, 44, 47, 52, 57, 60, 63, 68, 73, 76, 79, 84, 89, 92, 95, 100, 105, 108, 111, 116, 121, 124, 127, 132, 137, 140, 143, 148, 153, 156, 159, 164, 169, 172, 175, 180, 185, 188, 191, 196, 201, 204, 207, 212, 217, 220, 223, 228
Offset: 0
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987. See Fig. 9.1.3, drawing P_5-24, page 480.
- Herbert C. Moore, U.S. Patents 928,320 and 928,321, Patented July 20 1909. [Shows Cairo tiling.]
- Rémy Sigrist, Table of n, a(n) for n = 0..1000
- Chaim Goodman-Strauss and N. J. A. Sloane, A portion of the Cairo tiling
- Chaim Goodman-Strauss and N. J. A. Sloane, A Coloring Book Approach to Finding Coordination Sequences, Acta Cryst. A75 (2019), 121-134, also on NJAS's home page. Also arXiv:1803.08530.
- Chung, Ping Ngai, Miguel A. Fernandez, Yifei Li, Michael Mara, Frank Morgan, Isamar Rosa Plata, Niralee Shah, Luis Sordo Vieira, and Elena Wikner. Isoperimetric Pentagonal Tilings, Notices of the AMS 59, no. 5 (2012), pp. 632-640. See Fig. 1 (left).
- Tom Karzes, Tiling Coordination Sequences
- Frank Morgan, Optimal Pentagonal Tilings, Video, May 2021 [Has much to say about the Cairo tiling]
- Reticular Chemistry Structure Resource (RCSR), The mcm tiling (or net)
- Rémy Sigrist, PARI program for A296368
- N. J. A. Sloane, Illustration of initial terms (for a trivalent point)
- N. J. A. Sloane, Illustration of initial terms of coordination sequence 1,4,8,12,... for a tetravalent point
- N. J. A. Sloane, A tiling by rectangles which has the same graph and coordination sequences as the Cairo tiling (Seen on the streets of Piscataway, New Jersey, USA)
- N. J. A. Sloane, Overview of coordination sequences of Laves tilings [Fig. 2.7.1 of Grünbaum-Shephard 1987 with A-numbers added and in some cases the name in the RCSR database]
- N. J. A. Sloane, Coordination Sequences, Planing Numbers, and Other Recent Sequences (II), Experimental Mathematics Seminar, Rutgers University, Jan 31 2019, Part I, Part 2, Slides. (Mentions this sequence)
- Index entries for linear recurrences with constant coefficients, signature (2, -2, 2, -1).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] =
A008486; [3.3.3.3.6] =
A298014,
A298015,
A298016; [3.3.3.4.4] =
A298022,
A298024; [3.3.4.3.4] =
A008574,
A296368; [3.6.3.6] =
A298026,
A298028; [3.4.6.4] =
A298029,
A298031,
A298033; [3.12.12] =
A019557,
A298035; [4.4.4.4] =
A008574; [4.6.12] =
A298036,
A298038,
A298040; [4.8.8] =
A022144,
A234275; [6.6.6] =
A008458.
-
Join[{1, 3, 8}, LinearRecurrence[{2, -2, 2, -1}, {12, 15, 20, 25}, 100]] (* Jean-François Alcover, Aug 05 2018 *)
-
\\ See Links section.
A194275
Concentric pentagonal numbers of the second kind: a(n) = floor(5*n*(n+1)/6).
Original entry on oeis.org
0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, 110, 130, 151, 175, 200, 226, 255, 285, 316, 350, 385, 421, 460, 500, 541, 585, 630, 676, 725, 775, 826, 880, 935, 991, 1050, 1110, 1171, 1235, 1300, 1366, 1435, 1505, 1576, 1650, 1725, 1801, 1880, 1960, 2041, 2125
Offset: 0
Using the numbers A008706 we can write:
0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
0, 0, 0, 0, 1, 5, 10, 15, 20, 25, 30, ...
0, 0, 0, 0, 0, 0, 0, 1, 5, 10, 15, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, ...
...
Illustration of initial terms (in a precise representation the pentagons should appear strictly concentric):
. o
. o o
. o o o
. o o o o o
. o o o o o o o
. o o o o o o o o o
. o o o o o o o
. o o o o o o o o
. o o o o o o o o o o o o o o o
.
. 1 5 10 16 25
Cf. similar sequences with the formula floor(k*n*(n+1)/(k+1)) listed in
A281026.
A068600
Number of n-uniform tilings having n different arrangements of polygons about their vertices.
Original entry on oeis.org
11, 20, 39, 33, 15, 10, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
- This sequence was originally calculated by Otto Krotenheerdt.
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, page 69.
- Krotenheerdt, Otto. "Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene," Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-natur. Reihe, 18(1969), 273-290; 19 (1970)19-38 and 97-122.
A250123
Coordination sequence of point of type 3.3.4.3.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.
Original entry on oeis.org
1, 5, 8, 8, 11, 17, 25, 27, 24, 30, 38, 46, 47, 44, 46, 50, 64, 68, 65, 66, 70, 80, 80, 83, 87, 91, 100, 100, 99, 99, 109, 121, 121, 119, 119, 125, 133, 139, 140, 140, 145, 153, 155, 152, 158, 166, 174, 175, 172, 174, 178, 192, 196, 193, 194, 198, 208, 208, 211
Offset: 0
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.
- Joseph Myers, Table of n, a(n) for n = 0..1000
- Robert Connelly, Jeffrey D. Shen, Alexander D. Smith, Ball Packings with Periodic Constraints, arXiv:1301.0664 [math.MG], 2013.
- Robert Connelly, Jeffrey D. Shen, Alexander D. Smith, Ball Packings with Periodic Constraints, Discrete Comput. Geom. 52 (2014), no. 4, 754--779. MR3279548.
- Brian Galebach, Tiling 132 (in list of 4-uniform tilings).
- Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
- N. J. A. Sloane, A portion of the 3-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}. The four black dots labeled P,Q,R,S show the four types of point. The present sequence is for a point of type P.
- N. J. A. Sloane, Shows layers a(0)-a(6)
A250124
Coordination sequence of point of type 3.3.12.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.
Original entry on oeis.org
1, 4, 7, 10, 15, 16, 21, 29, 28, 34, 33, 40, 48, 45, 53, 51, 59, 65, 64, 72, 68, 78, 83, 83, 89, 87, 97, 100, 102, 107, 106, 114, 119, 121, 124, 125, 132, 138, 138, 143, 144, 149, 157, 156, 162, 161, 168, 176, 173, 181, 179, 187, 193, 192, 200, 196, 206, 211, 211
Offset: 0
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.
- Joseph Myers, Table of n, a(n) for n = 0..1000
- Robert Connelly, Jeffrey D. Shen, Alexander D. Smith, Ball Packings with Periodic Constraints, arXiv:1301.0664 [math.MG], 2013.
- Robert Connelly, Jeffrey D. Shen, Alexander D. Smith, Ball Packings with Periodic Constraints, Discrete Comput. Geom. 52 (2014), no. 4, 754--779. MR3279548.
- Brian Galebach, Tiling 132 (in list of 4-uniform tilings).
- Brian Galebach, k-uniform tilings (k <= 6) and their A-numbers
- N. J. A. Sloane, A portion of the 3-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}. The four black dots labeled P,Q,R,S show the four types of point. The present sequence is for a point of type R.
- N. J. A. Sloane, Shows layers a(0)-a(6)
Comments