cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A209972 Number of binary words of length n avoiding the subword given by the binary expansion of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 4, 1, 1, 1, 2, 4, 5, 5, 1, 1, 1, 2, 4, 7, 8, 6, 1, 1, 1, 2, 4, 7, 12, 13, 7, 1, 1, 1, 2, 4, 7, 12, 20, 21, 8, 1, 1, 1, 2, 4, 7, 12, 21, 33, 34, 9, 1, 1, 1, 2, 4, 8, 13, 20, 37, 54, 55, 10, 1, 1, 1, 2, 4, 8, 15, 24, 33, 65, 88, 89, 11, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 16 2012

Keywords

Examples

			Square array begins:
  1,  1,  1,   1,   1,   1,   1,   1,   1, ...
  1,  1,  2,   2,   2,   2,   2,   2,   2, ...
  1,  1,  3,   3,   4,   4,   4,   4,   4, ...
  1,  1,  4,   5,   7,   7,   7,   7,   8, ...
  1,  1,  5,   8,  12,  12,  12,  13,  15, ...
  1,  1,  6,  13,  20,  21,  20,  24,  28, ...
  1,  1,  7,  21,  33,  37,  33,  44,  52, ...
  1,  1,  8,  34,  54,  65,  54,  81,  96, ...
  1,  1,  9,  55,  88, 114,  88, 149, 177, ...
		

Crossrefs

Columns give: 0, 1: A000012, 2: A001477(n+1), 3: A000045(n+2), 4, 6: A000071(n+3), 5: A005251(n+3), 7: A000073(n+3), 8, 12, 14: A008937(n+1), 9, 11, 13: A049864(n+2), 10: A118870, 15: A000078(n+4), 16, 20, 24, 26, 28, 30: A107066, 17, 19, 23, 25, 29: A210003, 18, 22: A209888, 21: A152718(n+3), 27: A210021, 31: A001591(n+5), 32: A001949(n+5), 33, 35, 37, 39, 41, 43, 47, 49, 53, 57, 61: A210031.
Main diagonal equals A234005 or column k=0 of A233940.

Programs

  • Mathematica
    A[n_, k_] := Module[{bb, cnt = 0}, Do[bb = PadLeft[IntegerDigits[j, 2], n]; If[SequencePosition[bb, IntegerDigits[k, 2], 1]=={}, cnt++], {j, 0, 2^n-1 }]; cnt];
    Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 01 2021 *)

A126198 Triangle read by rows: T(n,k) (1 <= k <= n) = number of compositions of n into parts of size <= k.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 5, 7, 8, 1, 8, 13, 15, 16, 1, 13, 24, 29, 31, 32, 1, 21, 44, 56, 61, 63, 64, 1, 34, 81, 108, 120, 125, 127, 128, 1, 55, 149, 208, 236, 248, 253, 255, 256, 1, 89, 274, 401, 464, 492, 504, 509, 511, 512, 1, 144, 504, 773, 912, 976, 1004, 1016, 1021, 1023, 1024
Offset: 1

Views

Author

N. J. A. Sloane, Mar 09 2007

Keywords

Comments

Also has an interpretation as number of binary vectors of length n-1 in which the length of the longest run of 1's is <= k (see A048004). - N. J. A. Sloane, Apr 03 2011
Higher Order Fibonacci numbers: A126198(n,k) = Sum_{h=0..k} A048004(n,h); for example, A126198(7,3) = Sum_{h=0..3} A048004(7,h) or A126198(7,3) = 1 + 33 + 47 + 27 = 108, the 7th tetranacci number. A048004 row(7) produces A126198 row(7) list of 1,34,81,108,120,125,127,128 which are 1, the 7th Fibonacci, the 7th tribonacci, ... 7th octanacci numbers. - Richard Southern, Aug 04 2017

Examples

			Triangle begins:
  1;
  1,  2;
  1,  3,  4;
  1,  5,  7,  8;
  1,  8, 13, 15, 16;
  1, 13, 24, 29, 31, 32;
  1, 21, 44, 56, 61, 63, 64;
Could also be extended to a square array:
  1  1  1  1  1  1  1 ...
  1  2  2  2  2  2  2 ...
  1  3  4  4  4  4  4 ...
  1  5  7  8  8  8  8 ...
  1  8 13 15 16 16 16 ...
  1 13 24 29 31 32 32 ...
  1 21 44 56 61 63 64 ...
which when read by antidiagonals (downwards) gives A048887.
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 154-155.

Crossrefs

Rows are partial sums of rows of A048004. Cf. A048887, A092921 for other versions.
2nd column = Fibonacci numbers, next two columns are A000073, A000078; last three diagonals are 2^n, 2^n-1, 2^n-3.
Cf. A082267.

Programs

  • Maple
    A126198 := proc(n,k) coeftayl( x*(1-x^k)/(1-2*x+x^(k+1)),x=0,n); end: for n from 1 to 11 do for k from 1 to n do printf("%d, ",A126198(n,k)); od; od; # R. J. Mathar, Mar 09 2007
    # second Maple program:
    T:= proc(n, k) option remember;
          if n=0 or k=1 then 1
        else add(T(n-j, k), j=1..min(n, k))
          fi
        end:
    seq(seq(T(n, k), k=1..n), n=1..15);  # Alois P. Heinz, Oct 23 2011
  • Mathematica
    rows = 11; t[n_, k_] := Sum[ (-1)^i*2^(n-i*(k+1))*Binomial[ n-i*k, i], {i, 0, Floor[n/(k+1)]}] - Sum[ (-1)^i*2^((-i)*(k+1)+n-1)*Binomial[ n-i*k-1, i], {i, 0, Floor[(n-1)/(k+1)]}]; Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 1, n}]](* Jean-François Alcover, Nov 17 2011, after Max Alekseyev *)

Formula

G.f. for column k: (x-x^(k+1))/(1-2*x+x^(k+1)). [Riordan]
T(n,3) = A008937(n) - A008937(n-3) for n>=3. T(n,4) = A107066(n-1) - A107066(n-5) for n>=5. T(n,5) = A001949(n+4) - A001949(n-1) for n>=5. - R. J. Mathar, Mar 09 2007
T(n,k) = A181695(n,k) - A181695(n-1,k). - Max Alekseyev, Nov 18 2010
Conjecture: Sum_{k=1..n} T(n,k) = A039671(n), n>0. - L. Edson Jeffery, Nov 29 2013

Extensions

More terms from R. J. Mathar, Mar 09 2007

A189161 T(n,k)=Number of nXk binary arrays without the pattern 0 0 1 1 diagonally, vertically or horizontally.

Original entry on oeis.org

2, 4, 4, 8, 16, 8, 15, 64, 64, 15, 28, 225, 512, 225, 28, 52, 784, 3375, 3375, 784, 52, 96, 2704, 21952, 37976, 21952, 2704, 96, 177, 9216, 140608, 424401, 424401, 140608, 9216, 177, 326, 31329, 884736, 4597967, 8210464, 4597967, 884736, 31329, 326, 600
Offset: 1

Views

Author

R. H. Hardin Apr 17 2011

Keywords

Comments

Table starts
...2......4.........8..........15.............28...............52
...4.....16........64.........225............784.............2704
...8.....64.......512........3375..........21952...........140608
..15....225......3375.......37976.........424401..........4597967
..28....784.....21952......424401........8210464........151889331
..52...2704....140608.....4597967......151889331.......4708773306
..96...9216....884736....48460966.....2710884810.....139543984265
.177..31329...5545233...507947896....48083827685....4101554902927
.326.106276..34645976..5289780940...844714479714..118889716429242
.600.360000.216000000.54890361712.14772128520081.3425594682105277

Examples

			Some solutions for 6X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..1..0..1..0....1..0..1..0....1..0..0..0....0..1..1..1....1..0..1..0
..1..0..1..0....1..0..1..0....0..1..0..1....0..0..1..0....0..0..0..0
..1..0..0..0....0..1..1..0....1..0..1..0....0..1..0..0....1..0..0..1
..0..0..1..0....0..0..1..0....0..0..0..0....0..0..1..0....0..1..0..0
..1..1..0..1....0..1..0..1....0..0..0..0....0..0..0..0....1..0..1..0
		

Crossrefs

Column 1 is A008937(n+1)
Column 2 is column 1 squared
Column 3 is column 1 cubed

A352105 Numbers whose maximal tribonacci representation (A352103) is palindromic.

Original entry on oeis.org

0, 1, 3, 5, 7, 8, 14, 18, 23, 27, 36, 40, 51, 52, 62, 69, 78, 88, 95, 102, 110, 130, 148, 156, 176, 181, 194, 211, 229, 242, 246, 264, 277, 294, 312, 325, 326, 363, 397, 411, 448, 463, 477, 514, 548, 562, 599, 617, 650, 674, 682, 715, 739, 770, 803, 827, 838, 862
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

A027084(n) is a term since its maximal tribonacci representation is n-1 1's and no 0's.
The pairs {A008937(3*k+1)-1, A008937(3*k+1)} = {0, 1}, {7, 8}, {51, 52}, ... are consecutive terms in this sequence: the maximal tribonacci representation of A008937(3*k+1)-1 is 3*k 1's and no 0's (except for k=0 where the representation is 0), and the maximal tribonacci representation of A008937(3*k+1) is of the form 100100...1001 with k blocks of 100 followed by a 1 at the end.

Examples

			The first 10 terms are:
   n  a(n)  A352103(a(n))
  --  ----  -------------
   1    0               0
   2    1               1
   3    3              11
   4    5             101
   5    7             111
   6    8            1001
   7   14            1111
   8   18           10101
   9   23           11011
  10   27           11111
		

Crossrefs

A027084 is a subsequence.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, True, PalindromeQ[FromDigits[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[0, 1000], q]

A027084 G.f.: x^2*(x^2 + x + 1)/(x^4 - 2*x + 1).

Original entry on oeis.org

1, 3, 7, 14, 27, 51, 95, 176, 325, 599, 1103, 2030, 3735, 6871, 12639, 23248, 42761, 78651, 144663, 266078, 489395, 900139, 1655615, 3045152, 5600909, 10301679, 18947743, 34850334, 64099759, 117897839, 216847935, 398845536
Offset: 2

Views

Author

Keywords

Comments

Lengths of palindromic prefixes of the ternary tribonacci word A080843 [A. Glen]. - N. J. A. Sloane, Jun 09 2019
Original definition was: a(n) = (1/2)*T(n,n+2), T given by A027082.

Crossrefs

Programs

  • PARI
    Vec(x^2*(x^2 + x + 1)/(x^4 - 2*x + 1) + O(x^50)) \\ Michel Marcus, Dec 29 2014

Formula

Positive numbers of the form (t_n + t_{n+2} - 3)/2, n>1, where {t_n} are the tribonacci numbers A000073 [A. Glen]. See Mousavi-Shallit, 2014. - N. J. A. Sloane, Jun 09 2019
a(n) = A008937(n-1) - 1 = A018921(n-3) - 1.
2*a(n) = A000213(n+2)-3. - R. J. Mathar, Jun 24 2020

Extensions

Entry revised by N. J. A. Sloane, Aug 05 2018

A055216 Triangle T(n,k) by rows, n >= 0, 0<=k<=n: T(n,k) = Sum_{i=0..n-k} binomial(n-k,i) *Sum_{j=0..k-i} binomial(i,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 3, 1, 1, 5, 10, 8, 3, 1, 1, 6, 15, 17, 9, 3, 1, 1, 7, 21, 31, 23, 9, 3, 1, 1, 8, 28, 51, 50, 26, 9, 3, 1, 1, 9, 36, 78, 96, 66, 27, 9, 3, 1, 1, 10, 45, 113, 168, 147, 76, 27, 9, 3, 1, 1, 11, 55, 157, 274, 294, 192, 80, 27, 9, 3, 1
Offset: 0

Views

Author

Clark Kimberling, May 07 2000

Keywords

Comments

T(n,k) is the maximal number of different sequences that can be obtained from a ternary sequence of length n by deleting k symbols.
T(i,j) is the number of paths from (0,0) to (i-j,j) using steps (1 unit right) or (1 unit right and 1 unit up) or (1 unit right and 2 units up).
If m >= 1 and n >= 2, then T(m+n-1,m) is the number of strings (s(1),s(2),...,s(n)) of nonnegative integers satisfying s(n)=m and 0<=s(k)-s(k-1)<=2 for k=2,3,...,n.
T(n,k) is the number of 1100-avoiding 0-1 sequences of length n containing k good 1's. A 1 is bad if it is immediately followed by two or more 1's and then a 0; otherwise it is good. In particular, a 1 with no 0's to its right is good. For example, 110101110111 is 1100-avoiding and only the 1 in position 6 is bad and T(4,3) counts 0111, 1011, 1101. - David Callan, Jul 25 2005
The matrix inverse starts:
1;
-1,1;
1,-2,1;
-1,3,-3,1;
1,-4,6,-4,1;
-2,8,-13,11,-5,1;
8,-30,45,-36,18,-6,1;
-36,137,-207,163,-78,27,-7,1;
192,-732,1112,-884,425,-144,38,-8,1;
- R. J. Mathar, Mar 12 2013

Examples

			8=T(5,2) counts these strings: 013, 023, 113, 123, 133, 223, 233, 333.
Rows:
1;
1,1;
1,2,1;
1,3,3,1;
1,4,6,3,1;
...
		

Crossrefs

Row sums: A008937. Central numbers: T(2n, n)=A027914(n) for n >= 0.

Programs

  • Maple
    A055216 := proc(n,k)
        a := 0 ;
        for i from 0 to n-k do
            a := a+binomial(n-k,i)*add(binomial(i,j),j=0..k-i) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Mar 13 2013
  • Mathematica
    T[n_, k_] := Sum[Binomial[n - k, i]*Sum[Binomial[i, j], {j, 0, k - i}], {i, 0, n - k}];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 28 2019 *)

Formula

T(i, 0)=T(i, i)=1 for i >= 0; T(i, 1)=T(i, i-1)=i for i >= 2; T(i, j)=T(i-1, j)+T(i-2, j-1)+T(i-3, j-2) for 2<=j<=i-2, i >= 3.

Extensions

Better description and references from N. J. A. Sloane, Aug 05 2000

A113300 Sum of even-indexed terms of tribonacci numbers.

Original entry on oeis.org

0, 1, 3, 10, 34, 115, 389, 1316, 4452, 15061, 50951, 172366, 583110, 1972647, 6673417, 22576008, 76374088, 258371689, 874065163, 2956941266, 10003260650, 33840788379, 114482567053, 387291750188, 1310198605996, 4432370135229, 14994600761871, 50726371026838
Offset: 0

Views

Author

Jonathan Vos Post, Oct 24 2005

Keywords

Comments

Partial sums of A099463. a(n+1) gives row sums of Riordan array (1/(1-x)^2,(1+x)^2/(1-x)^2). Congruent to 0,1,1,0,0,1,1,0,0,... modulo 2. - Paul Barry, Feb 07 2006

Crossrefs

Programs

  • Magma
    I:=[0,1,3]; [n le 3 select I[n] else 3*Self(n-1) +Self(n-2) +Self(n-3): n in [1..61]]; // G. C. Greubel, Nov 19 2021
    
  • Mathematica
    Accumulate[Take[LinearRecurrence[{1,1,1},{0,0,1},60],{1,-1,2}]] (* Harvey P. Dale, Nov 06 2011 *)
    LinearRecurrence[{3,1,1},{0,1,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)
    a[ n_] := Sum[ SeriesCoefficient[ SeriesCoefficient[ x / (1 - x - y - x y) , {x, 0, n - k}]^2 , {y, 0, k}], {k, 0, n}]; (* Michael Somos, Jun 27 2017 *)
  • Sage
    @CachedFunction
    def T(n): # T(n) = A000073(n)
        if (n<2): return 0
        elif (n==2): return 1
        else: return T(n-1) +T(n-2) +T(n-3)
    def a(n): return sum( T(2*j) for j in (0..n) )
    [a(n) for n in (0..60)] # G. C. Greubel, Nov 19 2021

Formula

a(n) = Sum_{i=0..n} A000073(2*n).
a(n) = Sum_{i=0..n} A099463(n).
a(n) + A113301(n) = A008937(n).
From Paul Barry, Feb 07 2006: (Start)
G.f.: x/(1 - 3*x - x^2 - x^3).
a(n) = 3*a(n-1) + a(n-2) + a(n-3). (End)

A172316 7th column of the array A172119.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 127, 252, 500, 992, 1968, 3904, 7744, 15361, 30470, 60440, 119888, 237808, 471712, 935680, 1855999, 3681528, 7302616, 14485344, 28732880, 56994048, 113052416, 224248833, 444816138, 882329660
Offset: 0

Views

Author

Richard Choulet, Jan 31 2010

Keywords

Examples

			a(3) = binomial(3,3)*2^3 = 8.
a(7) = binomial(7,7)*2^7 - binomial(1,0)*2^0 = 127.
		

Crossrefs

Partial sums of A001592.

Programs

  • Maple
    for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od; k:=6:taylor(1/(1-2*z+z^(k+1)),z=0,30);

Formula

G.f.: 1/(1 - 2*z + z^7).
Recurrence formula: a(n+7) = 2*a(n+6) - a(n).
a(n) = Sum_{j=0..floor(n/(k+1))} ((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j)) with k=6.

A172317 8th column of A172119.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 255, 508, 1012, 2016, 4016, 8000, 15936, 31744, 63233, 125958, 250904, 499792, 995568, 1983136, 3950336, 7868928, 15674623, 31223288, 62195672, 123891552, 246787536, 491591936, 979233536
Offset: 0

Views

Author

Richard Choulet, Jan 31 2010

Keywords

Examples

			a(4) = binomial(4,4)*2^4 = 16.
a(9) = binomial(9,9)*2^9 - binomial(2,1)*2^1 = 512 - 4 = 508.
		

Crossrefs

Partial sums of A066178.

Programs

  • Maple
    k:=7:taylor(1/(1-2*z+z^(k+1)),z=0,30); for k from 0 to 20 do for n from 0 to 30 do b(n):=sum((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j),j=0..floor(n/(k+1))):od:k: seq(b(n),n=0..30):od;

Formula

The generating function is f such that: f(z)=1/(1-2*z+z^8). Recurrence relation: a(n+8)=2*a(n+7)-a(n). General term: a(n) = Sum_{j=0..floor(n/(k+1))} ((-1)^j*binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j)) with k=7.

A018921 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(4,8).

Original entry on oeis.org

4, 8, 15, 28, 52, 96, 177, 326, 600, 1104, 2031, 3736, 6872, 12640, 23249, 42762, 78652, 144664, 266079, 489396, 900140, 1655616, 3045153, 5600910, 10301680, 18947744, 34850335, 64099760, 117897840, 216847936, 398845537, 733591314, 1349284788, 2481721640
Offset: 0

Views

Author

Keywords

Comments

Not to be confused with the Pisot T(4,8) sequence, which is A020707. - R. J. Mathar, Feb 13 2016

Crossrefs

Cf. A008937.

Programs

  • Magma
    Tiv:=[4,8]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..40]]; // Bruno Berselli, Feb 17 2016
  • Mathematica
    RecurrenceTable[{a[1] == 4, a[2] == 8, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 40}] (* Bruno Berselli, Feb 17 2016 *)
    LinearRecurrence[{2,0,0,-1},{4,8,15,28},40] (* Harvey P. Dale, Mar 05 2019 *)
  • PARI
    Vec((4-x^2-2*x^3)/((1-x)*(1-x-x^2-x^3)) + O(x^40)) \\ Colin Barker, Feb 13 2016
    
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(4, 8, 30) \\ Colin Barker, Feb 14 2016
    

Formula

a(n) = 2*a(n-1) - a(n-4).
G.f.: (4-x^2-2*x^3) / ((1-x)*(1-x-x^2-x^3)). - Colin Barker, Feb 08 2012
a(n) = A008937(n+3) = A027084(n+3)+1. [first index correct by R. J. Mathar, Jun 24 2020]
a(n) = 2*a(n-1) - A008937(n). - Vincenzo Librandi, Feb 12 2016

Extensions

Comments moved to formula, and typo in data fixed by Colin Barker, Feb 13 2016
Previous Showing 11-20 of 35 results. Next