A001451
a(n) = (5*n)!/((3*n)!*n!*n!).
Original entry on oeis.org
1, 20, 1260, 100100, 8817900, 823727520, 79919739900, 7962100660800, 808906548235500, 83426304143982800, 8707404737345073760, 917663774856743842200, 97491279924241456098300, 10427604345391237790688000, 1121786259855036145008408000
Offset: 0
G.f. = 1 + 20*x + 1260*x^2 + 100100*x^3 + 8817900*x^4 + 823727520*x^5 + ... - _Michael Somos_, Aug 12 2018
-
List([0..15],n->Factorial(5*n)/(Factorial(3*n)*Fact0rial(n)*Factorial(n))); # Muniru A Asiru, Aug 12 2018
-
[Factorial(5*n)/(Factorial(3*n)*Factorial(n)*Factorial(n)): n in [0..30]]; // Vincenzo Librandi, May 22 2011
-
f := n->(5*n)!/((3*n)!*n!*n!);
-
Table[(5*n)!/((3*n)!*n!*n!), {n, 0, 20}] (* Vincenzo Librandi, Sep 04 2012 *)
A060538
Square array read by antidiagonals of number of ways of dividing n*k labeled items into n labeled boxes with k items in each box.
Original entry on oeis.org
1, 1, 2, 1, 6, 6, 1, 20, 90, 24, 1, 70, 1680, 2520, 120, 1, 252, 34650, 369600, 113400, 720, 1, 924, 756756, 63063000, 168168000, 7484400, 5040, 1, 3432, 17153136, 11732745024, 305540235000, 137225088000, 681080400, 40320, 1, 12870
Offset: 1
1 1 1 1
2 6 20 70
6 90 1680 34650
24 2520 369600 63063000
-
T(n,k)=(n*k)!/k!^n;
for(n=1, 6, for(k=1, 6, print1(T(n,k), ", ")); print) \\ Harry J. Smith, Jul 06 2009
A071550
a(n) = (8n)!/n!^8.
Original entry on oeis.org
1, 40320, 81729648000, 369398958888960000, 2390461829733887910000000, 18975581770994682860770223800320, 171889289584866507880743491472699801600
Offset: 0
A071551
a(n) = (9n)!/n!^9.
Original entry on oeis.org
1, 362880, 12504636144000, 1080491954750208000000, 140810154080474667338550000000, 23183587808948692737291767860055162880, 4439413043841128802009762476941510771390464000
Offset: 0
A071552
a(n) = (10n)!/n!^10.
Original entry on oeis.org
1, 3628800, 2375880867360000, 4386797336285844480000000, 12868639981414579848070084500000000, 49120458506088132224064306071170476903628800
Offset: 0
A069466
Triangle T(n, k) of numbers of square lattice walks that start and end at origin after 2*n steps and contain exactly k steps to the east, possibly touching origin at intermediate stages.
Original entry on oeis.org
1, 2, 2, 6, 24, 6, 20, 180, 180, 20, 70, 1120, 2520, 1120, 70, 252, 6300, 25200, 25200, 6300, 252, 924, 33264, 207900, 369600, 207900, 33264, 924, 3432, 168168, 1513512, 4204200, 4204200, 1513512, 168168, 3432, 12870, 823680, 10090080, 40360320, 63063000, 40360320, 10090080, 823680, 12870
Offset: 0
Triangle begins:
1,
2, 2,
6, 24, 6,
20, 180, 180, 20,
70, 1120, 2520, 1120, 70,
252, 6300, 25200, 25200, 6300, 252
...
T(4,2) = 2520 because there are 2520 distinct lattice walks of length 2*4=8 starting and ending at the origin and containing exactly 2 steps to the east.
For T(2,k), the lattice-path words are:
T(2,0):{EEWW, WEEW, WWEE, EWWE, WEWE, EWEW}
T(2,1):{NESW, NEWS, NSEW, NSWE, NWES, NWSE, ENSW, ENWS, ESNW, ESWN, EWNS, EWSN, SNEW, SNWE, SENW, SEWN, SWNE, SWEN, WNES, WNSE, WENS, WESN, WSNE, WSEN}
T(2,2):{NNSS, SNNS, SSNN, NSSN, SNSN, NSNS}
- Muniru A Asiru, Table of n, a(n) for n = 0..1325 (Rows n=0..50, flattened)
- A. Bostan, Calcul Formel pour la Combinatoire des Marches, Habilitation à Diriger des Recherches, Université Paris 13, 2017, page 11.
- G. Pólya, Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz, Mathematische Annalen, 84 (1921), 149-160.
-
T:=Flat(List([0..8],n->List([0..n],k->Binomial(2*n,n)*(Binomial(n,k))^2))); # Muniru A Asiru, Oct 21 2018
-
T:=(n,k)->binomial(2*n,n)*(binomial(n,k))^2: seq(seq(T(n,k),k=0..n),n=0..8); # Muniru A Asiru, Oct 21 2018
-
T[k_, r_] := Binomial[2k, k]*Binomial[k, r]^2; Table[T[k, r], {k, 0, 8}, {r, 0, k}] // Flatten (* Jean-François Alcover, Nov 21 2012, from explicit formula *)
A089659
a(n) = S1(n,2), where S1(n, t) = Sum_{k=0..n} (k^t * Sum_{j=0..k} binomial(n,j)).
Original entry on oeis.org
0, 2, 19, 104, 440, 1600, 5264, 16128, 46848, 130560, 352000, 923648, 2369536, 5963776, 14766080, 36044800, 86900736, 207224832, 489357312, 1145569280, 2660761600, 6136266752, 14060355584, 32027705344, 72561459200, 163577856000, 367068708864, 820204535808
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., 274 (2004), 331-342.
- Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
-
I:=[0,2,19,104]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..41]]; // Vincenzo Librandi, Jun 22 2016
-
LinearRecurrence[{8,-24,32,-16}, {0,2,19,104}, 40] (* Vincenzo Librandi, Jun 22 2016 *)
-
[2^(n-3)*n*(7*n^2 + 12*n + 5)/3 for n in (0..40)] # G. C. Greubel, May 24 2022
A184896
a(n) = C(2n,n) * (7^n/n!^2) * Product_{k=0..n-1} (7k+1)*(7k+6).
Original entry on oeis.org
1, 84, 45864, 35672000, 32445913500, 32247604076688, 33935228690034672, 37165308416775931392, 41919854708375196052500, 48365506771435816732770000, 56812832722107710740048677120, 67715433011522917282547695380480
Offset: 0
G.f.: A(x) = 1 + 84*x + 45864*x^2 + 35672000*x^3 +...
A(x)^(1/2) = 1 + 42*x + 22050*x^2 + 16909900*x^3 +...+ A184895(n)*x^n +...
A139541
There are 4*n players who wish to play bridge at n tables. Each player must have another player as partner and each pair of partners must have another pair as opponents. The choice of partners and opponents can be made in exactly a(n)=(4*n)!/(n!*8^n) different ways.
Original entry on oeis.org
1, 3, 315, 155925, 212837625, 618718975875, 3287253918823875, 28845653137679503125, 388983632561608099640625, 7637693625347175036443671875, 209402646126143497974176151796875, 7752714167528210725497923667975703125, 377130780679409810741846496828678078515625
Offset: 0
- G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Appendix: Problem 203.1, p164.
A184892
a(n) = C(2n,n) * (5^n/n!^2) * Product_{k=0..n-1} (5k+1)*(5k+4).
Original entry on oeis.org
1, 40, 8100, 2310000, 768075000, 278719056000, 107022956040000, 42753018765600000, 17585519046944062500, 7397979398239787500000, 3168258657090171394750000, 1376657183877933677265000000
Offset: 0
G.f.: A(x) = 1 + 40*x + 8100*x^2 + 2310000*x^3 +...
A(x)^(1/2) = 1 + 20*x + 3850*x^2 + 1078000*x^3 +...+ A184891(n)*x^n +...
-
Table[Binomial[2*n, n] * 5^n / n!^2 * Product[(5*k + 1)*(5*k + 4), {k, 0, n - 1}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 07 2020 *)
-
{a(n)=(2*n)!/n!^2*(5^n/n!^2)*prod(k=0,n-1,(5*k+1)*(5*k+4))}
Comments