cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 46 results. Next

A120683 Decimal expansion of secant of 15 degrees (cosecant of 75 degrees).

Original entry on oeis.org

1, 0, 3, 5, 2, 7, 6, 1, 8, 0, 4, 1, 0, 0, 8, 3, 0, 4, 9, 3, 9, 5, 5, 9, 5, 3, 5, 0, 4, 9, 6, 1, 9, 3, 3, 1, 3, 3, 9, 6, 2, 7, 5, 6, 0, 5, 2, 7, 9, 7, 2, 2, 0, 5, 5, 2, 5, 6, 0, 1, 2, 8, 2, 9, 2, 6, 0, 2, 2, 7, 8, 9, 8, 9, 9, 5, 2, 0, 7, 9, 8, 7, 6, 8, 9, 4, 7, 1, 8, 9, 8, 7, 7, 6, 9, 9, 8, 6, 6, 2, 0, 8, 3, 5, 8
Offset: 1

Views

Author

Rick L. Shepherd, Jun 24 2006

Keywords

Comments

Side length of the largest equilateral triangle that can be inscribed in a unit square (as stated in MathWorld/Weisstein link).
A quartic integer. - Charles R Greathouse IV, Aug 27 2017

Examples

			1.03527618041008304939559535049619331339627560527972...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.2, p. 487.

Crossrefs

Programs

Formula

Equals sec(Pi/12) = sec(A019679) = sqrt(6) - sqrt(2) = A010464 - A002193 = csc(5*Pi/12) = 1/sin(5*Pi/12) = 1/sin(10*A019691) = 1/A019884.
Equals Product_{k >= 1} 1/(1 - 1/(36*(2*k - 1)^2)). - Antonio Graciá Llorente, Mar 20 2024
From Amiram Eldar, Nov 24 2024: (Start)
Equals 2*A101263.
Equals Product_{k>=1} (1 - (-1)^k/A092242(k)). (End)
Smallest positive of the 4 real-valued roots of x^4-16*x^2+16=0. - R. J. Mathar, Aug 31 2025

A187110 Decimal expansion of sqrt(3/8).

Original entry on oeis.org

6, 1, 2, 3, 7, 2, 4, 3, 5, 6, 9, 5, 7, 9, 4, 5, 2, 4, 5, 4, 9, 3, 2, 1, 0, 1, 8, 6, 7, 6, 4, 7, 2, 8, 4, 7, 9, 9, 1, 4, 8, 6, 8, 7, 0, 1, 6, 4, 1, 6, 7, 5, 3, 2, 1, 0, 8, 1, 7, 3, 1, 4, 1, 8, 1, 2, 7, 4, 0, 0, 9, 4, 3, 6, 4, 3, 2, 8, 7, 5, 6, 6, 3, 4, 9, 6, 4, 8, 5, 8
Offset: 0

Views

Author

Keywords

Comments

Apart from leading digits, the same as A174925.
Radius of the circumscribed sphere (congruent with vertices) for a regular tetrahedron with unit edges. - Stanislav Sykora, Nov 20 2013

Examples

			sqrt(3/8)=0.61237243569579452454932101867647284799148687016417..
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. Platonic solids circumradii: A010503 (octahedron), A010527 (cube), A019881 (icosahedron), A179296 (dodecahedron). - Stanislav Sykora, Feb 10 2014

Programs

Formula

Equals A010464/4. - Stefano Spezia, Jan 26 2025
Equals 3*A020781 = A115754/2 = sqrt(A301755). - Hugo Pfoertner, Jan 26 2025

A020781 Decimal expansion of 1/sqrt(24).

Original entry on oeis.org

2, 0, 4, 1, 2, 4, 1, 4, 5, 2, 3, 1, 9, 3, 1, 5, 0, 8, 1, 8, 3, 1, 0, 7, 0, 0, 6, 2, 2, 5, 4, 9, 0, 9, 4, 9, 3, 3, 0, 4, 9, 5, 6, 2, 3, 3, 8, 8, 0, 5, 5, 8, 4, 4, 0, 3, 6, 0, 5, 7, 7, 1, 3, 9, 3, 7, 5, 8, 0, 0, 3, 1, 4, 5, 4, 7, 7, 6, 2, 5, 2, 2, 1, 1, 6, 5, 4, 9, 5, 2, 7, 5, 8, 7, 2, 0, 0, 1, 9
Offset: 0

Views

Author

Keywords

Comments

Radius of the inscribed sphere (tangent to the faces) for a regular tetrahedron with unit edges. - Stanislav Sykora, Nov 20 2013

Examples

			1/sqrt(24) = 0.20412414523193150818310700622549094933... . - _Vladimir Joseph Stephan Orlovsky_, May 30 2010
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 450.

Crossrefs

Cf. Platonic solids inradii: A020763 (octahedron), A179294 (icosahedron), A237603 (dodecahedron). - Stanislav Sykora, Feb 25 2014

Programs

Formula

Equals A010464/12. - Stefano Spezia, Jan 26 2025
Equals 1/A010480 = A020763/2 = 2*A020853 = A187110/3 = A244980/Pi. - Hugo Pfoertner, Jan 26 2025

A010547 Decimal expansion of square root of 96.

Original entry on oeis.org

9, 7, 9, 7, 9, 5, 8, 9, 7, 1, 1, 3, 2, 7, 1, 2, 3, 9, 2, 7, 8, 9, 1, 3, 6, 2, 9, 8, 8, 2, 3, 5, 6, 5, 5, 6, 7, 8, 6, 3, 7, 8, 9, 9, 2, 2, 6, 2, 6, 6, 8, 0, 5, 1, 3, 7, 3, 0, 7, 7, 0, 2, 6, 9, 0, 0, 3, 8, 4, 1, 5, 0, 9, 8, 2, 9, 2, 6, 0, 1, 0, 6, 1, 5, 9, 4, 3, 7, 7, 3, 2, 4, 1, 8, 5, 6, 0, 9, 3, 9, 2, 7, 4, 3, 7
Offset: 1

Views

Author

Keywords

Comments

Continued fraction expansion is 9 followed by {1, 3, 1, 18} repeated. - Harry J. Smith, Jun 11 2009
This differs only by offset from 2*(6^(1/2))/5 = 0.9797958971132712392789... as used in Theorem 5, equation 1.8, p.4 of Cao. - Jonathan Vos Post, Apr 29 2010

Examples

			9.797958971132712392789136298823565567863789922626680513730770269003841...
		

Crossrefs

Cf. A010167 (continued fraction).

Programs

  • Mathematica
    RealDigits[N[96^(1/2),200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 24 2012 *)
  • PARI
    { default(realprecision, 20080); x=sqrt(96); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010547.txt", n, " ", d)); } \\ Harry J. Smith, Jun 11 2009

Formula

Equals 4*A010464. - R. J. Mathar, Feb 03 2025

Extensions

Final digits of sequence corrected using the b-file. - N. J. A. Sloane, Aug 30 2009

A040003 Continued fraction for sqrt(6).

Original entry on oeis.org

2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4
Offset: 0

Views

Author

Keywords

Examples

			2.449489742783178098197284074... = 2 + 1/(2 + 1/(4 + 1/(2 + 1/(4 + ...)))). - _Harry J. Smith_, Jun 01 2009
		

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, p. 143.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010464 (decimal expansion).
Equals twice A040001.
Essentially the same as A010694.

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[6], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(6)); for (n=0, 20000, write("b040003.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 01 2009

Formula

a(n-1) = gcd(2^n, 3^n+1) (empirical). - Michel Marcus, Sep 03 2020
G.f.: 2*(1 + x + x^2)/(1 - x^2). - Stefano Spezia, Jul 26 2025

A154235 a(n) = ( (4 + sqrt(6))^n - (4 - sqrt(6))^n )/(2*sqrt(6)).

Original entry on oeis.org

1, 8, 54, 352, 2276, 14688, 94744, 611072, 3941136, 25418368, 163935584, 1057300992, 6819052096, 43979406848, 283644733824, 1829363802112, 11798463078656, 76094066608128, 490767902078464, 3165202550546432
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

Keywords

Comments

Lim_{n -> infinity} a(n)/a(n-1) = 4 + sqrt(6) = 6.4494897427....
Binomial transform of A164550, second binomial transform of A164549, third binomial transform of A123011, fourth binomial transform of A164532.
Binomial transform is A164551, second binomial transform is A164552, third binomial transform is A164553.

Crossrefs

Cf. A010464 (decimal expansion of square root of 6), A123011, A164532, A164549, A164550, A164551, A164552, A164553.

Programs

  • GAP
    a:=[1,8];; for n in [3..30] do a[n]:=8*a[n-1]-10*a[n-2]; od; a; # G. C. Greubel, May 21 2019
  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-6); S:=[ ((4+r)^n-(4-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
    
  • Mathematica
    LinearRecurrence[{8, -10}, {1, 8}, 30] (* or *) Table[Simplify[((4 + Sqrt[6])^n -(4-Sqrt[6])^n)/(2*Sqrt[6])], {n, 30}] (* G. C. Greubel, Sep 06 2016 *)
  • PARI
    a(n)=([0,1; -10,8]^(n-1)*[1;8])[1,1] \\ Charles R Greathouse IV, Sep 07 2016
    
  • PARI
    my(x='x+O('x^30)); Vec(x/(1-8*x+10*x^2)) \\ G. C. Greubel, May 21 2019
    
  • Sage
    [lucas_number1(n,8,10) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
    

Formula

From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 8*a(n-1) - 10*a(n-2) for n > 1, where a(0)=0, a(1)=1.
G.f.: x/(1 - 8*x + 10*x^2). (End)

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 04 2009

A265300 Decimal expansion of Sum_{k>=1} (x-c(2k-1)), where c = convergents to (x = sqrt(6)).

Original entry on oeis.org

4, 5, 4, 5, 8, 7, 1, 1, 3, 0, 6, 5, 0, 7, 2, 4, 7, 4, 9, 9, 8, 9, 7, 8, 3, 3, 0, 8, 0, 9, 5, 4, 3, 0, 1, 3, 3, 2, 5, 0, 8, 5, 3, 9, 7, 8, 3, 5, 3, 3, 9, 5, 4, 2, 6, 8, 1, 3, 8, 8, 7, 2, 6, 3, 3, 6, 6, 4, 0, 3, 9, 0, 4, 6, 5, 0, 4, 3, 5, 4, 0, 9, 4, 4, 5, 5
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2015

Keywords

Examples

			sum = 0.454587113065072474998978330809543013325085397...
		

Crossrefs

Cf. A010464, A265301, A265302, A265288 (guide).

Programs

  • Mathematica
    x = Sqrt[6]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265300 *)
    RealDigits[s2, 10, 120][[1]]  (* A265301 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265302 *)

A265301 Decimal expansion of Sum_{k>=1} c(2k), where c = convergents to (x = sqrt(6)).

Original entry on oeis.org

5, 1, 0, 2, 5, 7, 7, 4, 8, 2, 8, 4, 4, 7, 5, 3, 6, 6, 8, 7, 0, 9, 7, 4, 1, 8, 6, 1, 6, 4, 1, 0, 1, 0, 5, 9, 5, 6, 1, 6, 0, 0, 2, 0, 2, 9, 8, 4, 0, 3, 7, 1, 6, 6, 0, 9, 9, 6, 8, 0, 9, 4, 1, 3, 0, 5, 2, 4, 6, 3, 3, 9, 0, 6, 3, 0, 8, 4, 9, 6, 2, 8, 1, 7, 3, 5
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2015

Keywords

Examples

			sum = 0.0510257748284475366870974186164101059561600202984037166...
		

Crossrefs

Cf. A010464, A265300, A265302, A265288 (guide).

Programs

  • Mathematica
    x = Sqrt[6]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265300 *)
    RealDigits[s2, 10, 120][[1]]  (* A265301 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265302 *)

A265302 Decimal expansion of Sum_{k>=1} (c(2k)-c(2k-1)), where c = convergents to sqrt(6).

Original entry on oeis.org

5, 0, 5, 6, 1, 2, 8, 8, 7, 8, 9, 3, 5, 2, 0, 0, 1, 1, 6, 8, 6, 0, 7, 5, 7, 4, 9, 4, 2, 5, 9, 5, 3, 1, 1, 9, 2, 8, 1, 2, 4, 5, 4, 1, 8, 1, 3, 3, 7, 4, 3, 2, 5, 9, 2, 9, 1, 3, 5, 6, 8, 2, 0, 4, 6, 7, 1, 6, 5, 0, 2, 4, 3, 7, 1, 3, 5, 2, 0, 3, 7, 2, 2, 6, 2, 9
Offset: 0

Views

Author

Clark Kimberling, Dec 13 2015

Keywords

Examples

			sum = 0.50561288789352001168607574942595311928124541813374...
		

Crossrefs

Cf. A010464, A265300, A265301, A265288 (guide).

Programs

  • Mathematica
    x = Sqrt[6]; z = 600; c = Convergents[x, z];
    s1 = Sum[x - c[[2 k - 1]], {k, 1, z/2}]; N[s1, 200]
    s2 = Sum[c[[2 k]] - x, {k, 1, z/2}]; N[s2, 200]
    N[s1 + s2, 200]
    RealDigits[s1, 10, 120][[1]]  (* A265300 *)
    RealDigits[s2, 10, 120][[1]]  (* A265301 *)
    RealDigits[s1 + s2, 10, 120][[1]](* A265302 *)

A154237 a(n) = ( (6 + sqrt(6))^n - (6 - sqrt(6))^n )/(2*sqrt(6)).

Original entry on oeis.org

1, 12, 114, 1008, 8676, 73872, 626184, 5298048, 44791056, 378551232, 3198883104, 27030060288, 228394230336, 1929828955392, 16306120554624, 137778577993728, 1164159319286016, 9836554491620352, 83113874320863744, 702269857101754368
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009

Keywords

Comments

Fifth binomial transform of A002533 without initial term 1. Sixth binomial transform of 1 followed by A056452.
Lim_{n -> infinity} a(n)/a(n-1) = 6 + sqrt(6) = 8.4494897427....

Crossrefs

Cf. A010464 (decimal expansion of square root of 6), A002533, A056452.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-6); S:=[ ((6+r)^n-(6-r)^n)/(2*r): n in [1..20] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 07 2009
    
  • Magma
    I:=[1,12]; [n le 2 select I[n] else 12*Self(n-1)-30*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Sep 07 2016
  • Mathematica
    Join[{a=1,b=12},Table[c=12*b-30*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2011*)
    LinearRecurrence[{12, -30}, {1, 12}, 25] (* or *) Table[( (6 + sqrt(6))^n - (6 - sqrt(6))^n )/(2*sqrt(6)), {n,1,25}] (* G. C. Greubel, Sep 07 2016 *)
  • Sage
    [lucas_number1(n,12,30) for n in range(1, 21)] # Zerinvary Lajos, Apr 27 2009
    

Formula

From Philippe Deléham, Jan 06 2009: (Start)
a(n) = 12*a(n-1) - 30*a(n-2) for n > 1, with a(0)=0, a(1)=1.
G.f.: x/(1 - 12*x + 30*x^2). (End)

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 07 2009
Edited by Klaus Brockhaus, Oct 06 2009
Previous Showing 11-20 of 46 results. Next