cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A101622 A Horadam-Jacobsthal sequence.

Original entry on oeis.org

0, 1, 6, 13, 30, 61, 126, 253, 510, 1021, 2046, 4093, 8190, 16381, 32766, 65533, 131070, 262141, 524286, 1048573, 2097150, 4194301, 8388606, 16777213, 33554430, 67108861, 134217726, 268435453, 536870910, 1073741821, 2147483646, 4294967293, 8589934590
Offset: 0

Views

Author

Paul Barry, Dec 10 2004

Keywords

Comments

Companion sequence to A084639.
This is the sequence A(0,1;1,2;5) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
Except for the initial three terms, the decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 961", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Mar 27 2017
Named after the Australian mathematician Alwyn Francis Horadam (1923-2016) and the German mathematician Ernst Jacobsthal (1882-1965). - Amiram Eldar, Jun 10 2021

References

  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A131953.

Programs

  • Magma
    [(2^(n+2)+(-1)^n-5)/2: n in [0..35]]; // Vincenzo Librandi, Aug 12 2011
    
  • Mathematica
    LinearRecurrence[{2,1,-2},{0,1,6},40] (* Harvey P. Dale, Jul 08 2014 *)
  • PARI
    concat(0, Vec(x*(1+4*x)/((1-x)*(1+x)*(1-2*x)) + O(x^30))) \\ Colin Barker, Mar 28 2017

Formula

a(n) = (2^(n+2) + (-1)^n - 5)/2.
G.f.: x*(1+4*x)/((1-x)*(1+x)*(1-2*x)).
a(n) = (A014551(n+2)-5)/2.
(1, 6, 13, 30, 61, ...) are the row sums of A131953. - Gary W. Adamson, Jul 31 2007
From Paul Curtz, Jan 01 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) + 5.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n) = A000079(n+1) - A010693(n).
a(n+1) = A141722(n) + 5 = A141722(n) + A010716(n).
a(2n+1) - a(2n) = 1, 7, 31, ... = A083420.
a(2n+1) - 2*a(2n) = 1.
a(2n) = A002446 = 6*A002450, a(2n+1) = A141725. (End)
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n>2. - Colin Barker, Mar 28 2017
a(n) = (1/2) * Sum_{k=1..n} binomial(n+1,k) * (2+(-1)^k). - Wesley Ivan Hurt, Sep 23 2017

A023004 Number of partitions of n into parts of 5 kinds.

Original entry on oeis.org

1, 5, 20, 65, 190, 506, 1265, 2990, 6765, 14725, 31027, 63505, 126730, 247170, 472295, 885723, 1633000, 2963840, 5302075, 9358470, 16313440, 28107365, 47902010, 80803485, 134992865, 223474667, 366772720, 597049255, 964375855, 1546208695, 2461649861, 3892774130
Offset: 0

Views

Author

Keywords

Comments

a(n) is Euler transform of A010716. - Alois P. Heinz, Oct 17 2008

Crossrefs

Cf. 5th column of A144064. - Alois P. Heinz, Oct 17 2008

Programs

  • Maple
    with(numtheory): a:=proc(n) option remember; `if`(n=0, 1, add(add(d*5, d=divisors(j)) *a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Oct 17 2008
  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^k)^5,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
  • PARI
    \ps100 for(n=0,100,print1((polcoeff(1/eta(x)^5,n,x)),","))

Formula

G.f.: Product_{m>=1} 1/(1-x^m)^5.
a(n) ~ 5^(3/2) * exp(Pi * sqrt(10*n/3)) / (32 * 3^(3/2) * n^2) * (1 - (3*sqrt(6/5) /Pi + 5*sqrt(5/6)*Pi/24) / sqrt(n)). - Vaclav Kotesovec, Feb 28 2015, extended Jan 16 2017
a(0) = 1, a(n) = (5/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(5*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 06 2018

A144472 Negative values along the main diagonal of the array defined by A020806 and its differences.

Original entry on oeis.org

-1, 2, 9, 13, 31, 57, 119, 233, 471, 937, 1879, 3753, 7511, 15017, 30039, 60073, 120151, 240297, 480599, 961193, 1922391, 3844777, 7689559, 15379113, 30758231, 61516457, 123032919, 246065833, 492131671, 984263337, 1968526679, 3937053353, 7874106711
Offset: 1

Views

Author

Paul Curtz, Oct 10 2008, Oct 14 2008

Keywords

Examples

			A020806 and its repeated differences in the next rows start as follows:
..1,..4,..2,..8,..5,..7,..1,..4,..2,..8, <- A020806
..3,.-2,..6,.-3,..2,.-6,..3,.-2,..6,.-3, <- A131969
.-5,..8,.-9,..5,.-8,..9,.-5,..8,.-9,..5,
.13,-17,.14,-13,.17,-14,.13,-17,.14,-13,
-30,.31,-27,.30,-31,.27,-30,.31,-27,.30,
.61,-58,.57,-61,.58,-57,.61,-58,.57,-61,
The diagonal is 1,-2,-9,-13,-31,... which yields a(n) after signs are flipped.
		

Programs

  • Mathematica
    Join[{-1}, LinearRecurrence[{1, 2}, {2, 9}, 40]] (* Jean-François Alcover, Nov 06 2017 *)
  • PARI
    Vec(-x*(1 - 3*x - 9*x^2) / ((1 + x)*(1 - 2*x)) + O(x^50)) \\ Colin Barker, Nov 06 2017

Formula

a(n+1) - 2*a(n) = (-1)^n*A010716(n), n>1, period 2.
G.f.: x*(1-3*x-9*x^2) / ((1+x)*(2*x-1)). - R. J. Mathar, Oct 24 2008
a(n) = 11*2^(n-2)/3 - 5*(-1)^n/3, n>1. - R. J. Mathar, Oct 24 2008
From Colin Barker, Nov 06 2017: (Start)
a(n) = (11*2^n - 20) / 12 for n>1 and even.
a(n) = (11*2^n + 20) / 12 for n>1 and odd.
a(n) = a(n-1) + 2*a(n-2) for n>3.
(End)

Extensions

Edited and extended by R. J. Mathar, Oct 24 2008

A374359 a(1) = 2, a(n) = 5 for n > 1.

Original entry on oeis.org

2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

Stefano Spezia, Jul 06 2024

Keywords

Comments

Decimal expansion of 23/9, which is an approximation of the 5th root of 109 (A374357).
Simple continued fraction expansion of (1 + sqrt(29))/14 = (1 + A010484)/14.

Examples

			2.555555555555555555555555555555555555555...
		

Crossrefs

Cf. A374357 (decimal expansion of the 5th root of 109), A374358 (continued fraction of the 5th root of 109).
Cf. A010484.
Essentially the same as A021022 and A010716.

Programs

  • Mathematica
    LinearRecurrence[{1},{2,5},100]

Formula

G.f.: x*(2 + 3*x)/(1 - x).
a(n) = a(n-1) for n > 2.
E.g.f.: 5*exp(x) - 3*x - 5.

A166517 a(n) = (3 + 5*(-1)^n + 6*n)/4.

Original entry on oeis.org

2, 1, 5, 4, 8, 7, 11, 10, 14, 13, 17, 16, 20, 19, 23, 22, 26, 25, 29, 28, 32, 31, 35, 34, 38, 37, 41, 40, 44, 43, 47, 46, 50, 49, 53, 52, 56, 55, 59, 58, 62, 61, 65, 64, 68, 67, 71, 70, 74, 73, 77, 76, 80, 79, 83, 82, 86, 85, 89, 88, 92, 91, 95, 94, 98, 97, 101, 100, 104, 103, 107
Offset: 0

Views

Author

Vincenzo Librandi, Oct 16 2009

Keywords

Comments

A sequence defined by a(1)=1, a(n)=k*n-a(n-1), k a constant parameter, has recurrence a(n)= 3*a(n-1) -3*a(n-2) +a(n-3). Its generating function is x*(1+2*(k-1)*x+(1-k)*x^2)/((1+x)*(1-x)^2). The closed form is a(n) = k*n/2+k/4+(-1)^n*(3*k/4-1). This applies with k=3 to this sequence here, and for example to sequences A165033, and A166519-A166525. - R. J. Mathar, Oct 17 2009
From Paul Curtz, Feb 20 2010: (Start)
Also: A001651, terms swapped by pairs.
a(n) mod 9 defines a period-6 sequence which is a permutation of A141425. (End)

Crossrefs

Programs

  • Magma
    [(3 +5*(-1)^n+6*n)/4: n in [0..80]]; // Vincenzo Librandi, Sep 13 2013
  • Mathematica
    CoefficientList[Series[(2 x^2 - x + 2)/((1 + x) (x - 1)^2), {x, 0, 80}], x] (* Harvey P. Dale, Mar 25 2011 *)
    Table[(3 + 5 (-1)^n + 6 n) / 4, {n, 0, 100}] (* Vincenzo Librandi, Sep 13 2013 *)

Formula

a(n) = 3*n - a(n-1).
From Paul Curtz, Feb 20 2010: (Start)
a(n+1)-a(n) = (-1)^(n+1)*A010685(n).
Second differences: |a(n+2)-2*a(n+1)+a(n)| = A010716(n).
a(2*n) + a(2*n+1) = A016945(n) = 6*n+3.
a(2*n) = A016945(n).
a(2*n+1) = A016777(n). (End)
G.f. ( 2-x+2*x^2 ) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Mar 08 2011
E.g.f.: (1/4)*exp(-x)*(5 + 3*exp(2*x) + 6*x*exp(2*x)). - G. C. Greubel, May 15 2016
Sum_{n>=0} (-1)^(n+1)/a(n) = Pi/(3*sqrt(3)) (A073010). - Amiram Eldar, Feb 24 2023

Extensions

a(0)=2 added by Paul Curtz, Feb 20 2010

A190357 Decimal expansion of 1/4 - 2/Pi^2.

Original entry on oeis.org

0, 4, 7, 3, 5, 7, 6, 3, 2, 7, 1, 5, 3, 2, 4, 4, 5, 7, 1, 1, 2, 2, 4, 1, 0, 7, 3, 5, 8, 0, 5, 4, 4, 7, 2, 2, 1, 9, 1, 2, 8, 2, 4, 5, 0, 6, 5, 5, 5, 0, 6, 9, 0, 2, 3, 0, 8, 7, 8, 1, 9, 3, 6, 2, 1, 1, 6, 5, 3, 7, 5, 8, 0, 7, 5, 5, 2, 9, 1, 1, 7, 6, 1, 7, 5, 8, 1, 4, 5, 2, 1, 4, 8, 7, 5, 6, 3, 2, 4, 7, 7
Offset: 0

Views

Author

Jonathan Vos Post, May 09 2011

Keywords

Comments

Constant given on p. 1 of Schlage-Puchta.

Examples

			0.047357632715324457112241...
		

Crossrefs

Cf. A005117, A010716 (1/18), A059956 (6/Pi^2).

Programs

  • Magma
    R:=RealField(100); [(1/4) - (2/Pi(R)^2)]; // G. C. Greubel, Apr 05 2018
  • Mathematica
    Join[{0}, RealDigits[(1/4) - (2/Pi^2), 10, 100][[1]]] (* G. C. Greubel, Apr 05 2018 *)
  • PARI
    (1/4) - (2/Pi^2) \\ G. C. Greubel, Apr 05 2018
    

Formula

Equals (1/4) - (2/Pi^2).

A084962 Iterations of the Fibonacci sequence starting at 6.

Original entry on oeis.org

6, 8, 21, 10946
Offset: 0

Views

Author

Hollie L. Buchanan II, Jun 14 2003

Keywords

Comments

The next term, a(4) = 1.695... * 10^2287, has 2288 digits and is too large to display.
This sequence is of interest because the sequences with this recurrence and a(0) in {0, 1, 2, 3, 4} all converge to 1 and the sequence with a(0) = 5 is constant.

Examples

			a(3) = Fibonacci(a(2)) = Fibonacci(21) = 10946.
		

Crossrefs

Cf. A000045, A007097, A010716 (starting with 5), A084963 (starting with 7).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 6,
          (<<0|1>, <1|1>>^a(n-1))[1,2])
        end:
    seq(a(n), n=0..4);  # Alois P. Heinz, May 09 2020
  • Mathematica
    fibonaccieth6[m_] := Module[{ex = 6}, Do[ex = Fibonacci[ex], {m}]; ex] Table[fibonaccieth6[m], {m, 0, 4}]
    NestList[Fibonacci[#] &, 6, 4] (* Alonso del Arte, Apr 30 2020 *)
  • Scala
    val fiboLimited: LazyList[Int] = 0 #:: 1 #:: fiboLimited.zip(fiboLimited.tail).map { n => n._1 + n._2 }
    def fibonaccieth(start: Int): LazyList[Int] = LazyList.iterate(start)(fiboLimited)
    fibonaccieth(6).takeWhile( > 0).toList // _Alonso del Arte, Apr 30 2020

Formula

a(0) = 6, a(n) = Fibonacci(a(n-1)) for n>0.

A194880 The numerators of the inverse Akiyama-Tanigawa algorithm from A001045(n).

Original entry on oeis.org

0, -1, -1, -4, -5, -2, -7, -8, -3, -10, -11, -4, -13, -14, -5, -16, -17, -6, -19, -20, -7, -22, -23, -8, -25, -26, -9, -28, -29, -10, -31, -32, -11, -34, -35, -12, -37, -38, -13, -40, -41, -14, -43, -44, -15, -46, -47, -16, -49, -50, -17, -52, -53, -18, -55, -56, -19, -58, -59, -20
Offset: 0

Views

Author

Paul Curtz, Sep 07 2011

Keywords

Comments

0, -1, -1, -4/3, -5/3, -2, -7/3, -8/3, -3, -10/3, -11/3, -4, -13/4, -14/3, -5, = a(n)/b(n),
1, 0, 1, 4/3, 5/3, 2, 7/3, 8/3, 3,
1, -2, -1, -4/3, -5/3, -2, -7/3, -8/3, -3,
3, -2, 1, 4/3, 5/3, 2, 7/3, 8/3, 3,
5, -6, -1, -4/3, -5/3, -2, -7/3, -8/3, -3,
11, -10, 1, 4/3, 5/3, 2, 7/3, 8/3, 3,
21, -22, -1, -4/3, -5/3, -2, -7/3, -8/3, -3,
Vertical: A001045(n), -A078008(n), (-1)^(n+1)*A000012(n), (-1)^(n+1)*A010709(n)/A010701(n), (-1)^(n+1)*A010716(n+1)/A010701(n), A007395(n), .. .
a(n)=0, 1 before (-A145064(n+1)=-A051176(n+3).
b(n)=1, 1 before A169609(n). b(n)=1, 1, 1 before A144437(n+1).
a(n+5)-a(n+2)=b(n+5) (=-1,-3,-3,=-A169609(n)).

Programs

  • Mathematica
    a[0]=0; a[1]=-1; a[n_] := (-n-1)/Max[1, 2*Mod[n, 3]-1]; Table[a[n], {n, 0, 59}] (* Jean-François Alcover, Sep 18 2012 *)

Formula

a(3*n)=-3*n-1 except a(0)=0; a(3*n+1)=-3*n-2 except a(1)=-1; a(3*n+2)=-n-1.
From Chai Wah Wu, May 07 2024: (Start)
a(n) = 2*a(n-3) - a(n-6) for n > 7.
G.f.: x*(x^6 + x^5 - 3*x^3 - 4*x^2 - x - 1)/(x^6 - 2*x^3 + 1). (End)

A166577 Inverse binomial transform of A166517.

Original entry on oeis.org

1, 4, -5, 10, -20, 40, -80, 160, -320, 640, -1280, 2560, -5120, 10240, -20480, 40960, -81920, 163840, -327680, 655360, -1310720, 2621440, -5242880, 10485760, -20971520, 41943040, -83886080, 167772160, -335544320, 671088640, -1342177280, 2684354560, -5368709120
Offset: 0

Views

Author

Paul Curtz, Oct 17 2009

Keywords

Comments

The definition assumes that the offset of A166517 is changed to 0.
A166517 mod 9 yields a periodic sequence with period 1, 5, 4, 8, 7, 2.
This set of numbers in the period appears also in A153130, A146501, and A166304.

Crossrefs

Programs

  • Mathematica
    Join[{1,4},NestList[-2#&,-5,40]] (* Harvey P. Dale, Aug 02 2012 *)
    Join[{1, 4}, LinearRecurrence[{-2}, {-5}, 48]] (* G. C. Greubel, May 17 2016 *)

Formula

a(n) = -2*a(n-1), n>2.
a(n) = (-1)^(n+1)*A020714(n-2), n>1.
From Colin Barker, Jan 07 2013: (Start)
a(n) = -5*(-1)^n*2^(n-2) for n>1.
G.f.: (3*x^2+6*x+1)/(2*x+1). (End)
E.g.f.: (9/4) + (3/2)*x - (5/4)*exp(-2*x). - Alejandro J. Becerra Jr., Feb 15 2021

Extensions

Edited, comments not concerning this sequence removed, and extended by R. J. Mathar, Oct 21 2009

A176260 Periodic sequence: Repeat 5, 1.

Original entry on oeis.org

5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5
Offset: 0

Views

Author

Klaus Brockhaus, Apr 13 2010

Keywords

Comments

Interleaving of A010716 and A000012.
Also continued fraction expansion of (5+3*sqrt(5))/2.
Also decimal expansion of 17/33.
Essentially first differences of A047264.
Binomial transform of 5 followed by -A122803 without initial terms 1, -2.
Inverse binomial transform of 5 followed by A007283 without initial term 3.
Second inverse binomial transform of A168607 without initial term 3.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 3*x^3 + 6*x^4 + 6*x^5 + ... is the o.g.f. for A008805. - Peter Bala, Mar 13 2015

Crossrefs

Cf. A010716 (all 5's sequence), A000012 (all 1's sequence), A090550 (decimal expansion of (5+3*sqrt(5))/2), A010686 (repeat 1, 5), A047264 (congruent to 0 or 5 mod 6), A122803 (powers of -2), A007283 (3*2^n), A168607 (3^n+2), A008805.

Programs

  • Magma
    &cat[ [5, 1]: n in [0..52] ];
    [ 3+2*(-1)^n: n in [0..104] ];

Formula

a(n) = 3+2*(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 5, a(1) = 1.
a(n) = -a(n-1)+6 for n > 0; a(0) = 5.
a(n) = 5*((n+1) mod 2)+(n mod 2).
a(n) = A010686(n+1).
G.f.: (5+x)/(1-x^2).
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 5, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+2^(2-s)). (End)
E.g.f.: 5*cosh(x) + sinh(x). - Stefano Spezia, Feb 09 2025
Previous Showing 21-30 of 38 results. Next