cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 171 results. Next

A040115 Concatenate absolute values of differences between adjacent digits of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1
Offset: 0

Views

Author

Keywords

Comments

Let the decimal expansion of n be abcd...efg, say. Then a(n) has decimal expansion |a-b| |b-c| |c-d| ... |e-f| |f-g|. Leading zeros in a(n) are omitted.
From M. F. Hasler, Nov 09 2019: (Start)
This sequence coincides with A080465 up to a(109) but is thereafter completely different.
Eric Angelini calls a(n) the "ghost" of the number n and considers iterations of n -> n +- a(n) depending on parity of a(n), cf. A329200 and A329201. (End)

Examples

			a(371) = 46, for example.
a(110) = 01 = 1, while A080465(110) = 10 - 1 = 9. - _M. F. Hasler_, Nov 09 2019
		

Crossrefs

Cf. A329200, A329201: iterations of n +- a(n).

Programs

  • Mathematica
    Table[FromDigits[Abs[Differences[IntegerDigits[n]]]],{n,110}] (* Harvey P. Dale, Dec 16 2021 *)
  • PARI
    apply( A040115(n)=fromdigits(abs((n=digits(n+!n))[^-1]-n[^1])), [10..199]) \\ Works for all n >= 0. - M. F. Hasler, Nov 09 2019

Formula

a(n) = 0 iff n is a repdigit >= 11 (A010785). - Bernard Schott, May 09 2022

Extensions

Definition clarified by N. J. A. Sloane, Aug 19 2008
Name edited by M. F. Hasler, Nov 09 2019
Terms a(0) = a(1) = ... = a(9) = 0 prepended by Max Alekseyev, Jul 26 2024

A002278 a(n) = 4*(10^n - 1)/9.

Original entry on oeis.org

0, 4, 44, 444, 4444, 44444, 444444, 4444444, 44444444, 444444444, 4444444444, 44444444444, 444444444444, 4444444444444, 44444444444444, 444444444444444, 4444444444444444, 44444444444444444, 444444444444444444, 4444444444444444444, 44444444444444444444, 444444444444444444444
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A075415(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 4*10^(n-1) with a(0)=0;
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=4. (End)
G.f.: 4*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 4*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
a(n) = A007091(A024049(n)). - Michel Marcus, Jun 16 2024
From Elmo R. Oliveira, Jul 19 2025: (Start)
a(n) = 4*A002275(n).
a(n) = A010785(A017209(n-1)) for n >= 1. (End)

A047842 Describe n (count digits in order of increasing value, ignoring missing digits).

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1011, 21, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1012, 1112, 22, 1213, 1214, 1215, 1216, 1217, 1218, 1219, 1013, 1113, 1213, 23, 1314, 1315, 1316, 1317, 1318, 1319, 1014, 1114, 1214, 1314, 24, 1415, 1416
Offset: 0

Views

Author

Keywords

Comments

Digit count of n. The digit count numerically summarizes the frequency of digits 0 through 9 in that order when they occur in a number. - Lekraj Beedassy, Jan 11 2007
Numbers which are digital permutations of one another have the same digit count. Compare with first entries of "Look And Say" or LS sequence A045918. As in the latter, a(n) has first odd-numbered-digit entry occurring at n=1111111111 with digit count 101, but a(n) has first ambiguous term 1011. For digit count invariants, i.e., n such that a(n)=n, see A047841. - Lekraj Beedassy, Jan 11 2007

Examples

			a(31) = 1113 because (one 1, one 3) make up 31.
101 contains one 0 and two 1's, so a(101) = 1021.
a(131) = 2113.
For n = 20231231, the digits of the date 2023-12-31, last day of 2023, a(n) = 10213223 is a fixed point: a(a(n)) = a(n) (cf. A235775). Since a(n) is invariant under permutation of the digits of n (leading zeros avoided), this is independent of the chosen notation, yyyy-mm-dd or mm/dd/yyyy or dd.mm.yyyy. - _M. F. Hasler_, Jan 11 2024
		

Crossrefs

Cf. A235775.
Cf. A244112 (the same but in order of decreasing value of digits), A010785.
Cf. A005150 (Look and Say: describe the number digit-wise instead of overall count).
Cf. A328447 (least m having the same digits as n).

Programs

  • Haskell
    import Data.List (sort, group); import Data.Function (on)
    a047842 :: Integer -> Integer
    a047842 n = read $ concat $
       zipWith ((++) `on` show) (map length xs) (map head xs)
       where xs = group $ sort $ map (read . return) $ show n
    -- Reinhard Zumkeller, Jan 15 2014
    
  • Mathematica
    dc[n_] :=FromDigits@Flatten@Select[Table[{DigitCount[n, 10, k], k}, {k, 0, 9}], #[[1]] > 0 &];Table[dc[n], {n, 0, 46}] (* Ray Chandler, Jan 09 2009 *)
    Array[FromDigits@ Flatten@ Map[Reverse, Tally@ Sort@ IntegerDigits@ #] &, 46] (* Michael De Vlieger, Jul 15 2020 *)
  • PARI
    A047842(n)={if(n, local(c=1, S="", d=vecsort(digits(n)), a(i)=Str(S, c, d[i])); for(i=2, #d, if(d[i]==d[i-1], c++, S=a(i-1); c=1)); eval(a(#d)), 10)} \\ M. F. Hasler, Feb 25 2018; edited Jan 10 2024
  • Python
    def A047842(n):
        s, x = '', str(n)
        for i in range(10):
            y = str(i)
            c = str(x.count(y))
            if c != '0':
                s += c+y
        return int(s) # Chai Wah Wu, Jan 03 2015
    

Formula

a(a(n)) = A235775(n). [By definition of A235775. - M. F. Hasler, Jan 11 2024]
a(A010785(n)) = A244112(A010785(n)). - Reinhard Zumkeller, Nov 11 2014
a(n) = a(A328447(n)) = a(m) for all n and all m having the same digits as n, with multiplicity. - M. F. Hasler, Jan 11 2024

Extensions

Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar

A037904 Greatest digit of n - least digit of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 9
Offset: 1

Views

Author

Keywords

Comments

a(n) = A054055(n)-A054054(n); a(A010785(n)) = 0; for k>0: a(n) = a(n*10^k + A000030(n)) = a(n*10^k + A010879(n)) = a(n*10^k + A054054(n)) = a(n*10^k + A054055(n)) . - Reinhard Zumkeller, Dec 14 2007; corrected by David Wasserman, May 21 2008

Crossrefs

Programs

  • Haskell
    a037904 = f 9 0 where
       f u v 0 = v - u
       f u v z = f (min u d) (max v d) z' where (z', d) = divMod z 10
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Maple
    f:= n -> (max-min)(convert(n,base,10)):
    map(f, [$1..1000]); # Robert Israel, Jul 07 2016
  • Mathematica
    f[n_] := Block[{d = IntegerDigits[n]}, Max[d] - Min[d]]; Table[ f[n], {n, 1, 15}]
  • PARI
    a(n)=my(d=digits(n)); vecmax(d)-vecmin(d) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    def A037904(n): return int(max(s:=str(n)))-int(min(s)) # Chai Wah Wu, Nov 10 2023

Extensions

Incorrect comments deleted by Robert Israel, Jul 07 2016

A096503 Euler-phi of these numbers is a decimal repdigit.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 23, 24, 30, 46, 67, 69, 89, 92, 115, 134, 138, 178, 184, 223, 230, 276, 446, 669, 892, 1043, 1115, 1338, 1341, 1784, 2086, 2230, 2676, 2682, 446669, 666667, 893338, 895043, 902423, 1333334, 1340007, 1786676
Offset: 1

Views

Author

Labos Elemer, Jul 12 2004

Keywords

Examples

			n=88888892, A000010(n)=44444444.
Regular solutions: if x=repdigit+1 is prime, then phi[x]=repdigit (see A028988).
		

Crossrefs

Programs

  • Mathematica
    Needs["CNT`"]; t = {PhiInverse[1]}; Do[n = FromDigits[Table[i, {j}]]; AppendTo[t, PhiInverse[n]], {j, 18}, {i, 2, 8, 2}]; t2 = Union[Flatten[t]]; t (* T. D. Noe, Feb 25 2014 *)
    Select[Range[2*10^5], Length@ Union@ IntegerDigits@ EulerPhi@ # == 1 &] (* Michael De Vlieger, Jul 02 2016 *)
  • PARI
    isok(n) = d = digits(eulerphi(n)); vecmin(d) == vecmax(d); \\ Michel Marcus, Feb 25 2014

A135643 Straight-line numbers > 99.

Original entry on oeis.org

111, 123, 135, 147, 159, 210, 222, 234, 246, 258, 321, 333, 345, 357, 369, 420, 432, 444, 456, 468, 531, 543, 555, 567, 579, 630, 642, 654, 666, 678, 741, 753, 765, 777, 789, 840, 852, 864, 876, 888, 951, 963, 975, 987, 999, 1111, 1234
Offset: 1

Views

Author

Omar E. Pol, Nov 30 2007, Dec 09 2008, Nov 14 2009

Keywords

Comments

Numbers with more than two digits whose digits are in arithmetic progression. The structure of digits represents a straight line. In the graphic representation the points are connected by imaginary line segments. For a(1) to a(45) this sequence is equal to A034840. Each term of this sequence that is greater than 9876543210 is a repdigit number (A010785).
Note that the sequence of straight-line numbers starts: 10, 11, 12, ..., 98, 99, 111, 123, ... All 2-digit numbers are straight-line numbers, but here the numbers < 100 are omitted. - Omar E. Pol, Nov 14 2009

Examples

			The number 3579 is a straight-line number:
  . . . 9
  . . . .
  . . 7 .
  . . . .
  . 5 . .
  . . . .
  3 . . .
  . . . .
  . . . .
  . . . .
		

Crossrefs

Cf. A247616 (subsequence).

Programs

  • Haskell
    a135643 n = a135643_list !! (n-1)
    a135643_list = filter f [100..] where
       f x = all (== 0) ws where
             ws = zipWith (-) (tail vs) vs
             vs = zipWith (-) (tail us) us
             us = map (read . return) $ show x
    -- Reinhard Zumkeller, Sep 21 2014
    
  • Mathematica
    Select[Range[100,1300],Length[Union[Differences[IntegerDigits[#]]]]==1&] (* Harvey P. Dale, May 09 2012 *)
  • PARI
    is(n) = my (d=digits(n), cvx=0, ccv=0, str=0); for (i=1, #d-2, my (x=d[i]+d[i+2]-2*d[i+1]); if (x>0, cvx++, x<0, ccv++, str++)); return (cvx==0 && ccv==0 && str>0) \\ Rémy Sigrist, Aug 09 2017
    
  • Python
    from itertools import count, islice
    def agen():
        progressions = ["".join(map(str, range(i, j+1, d))) for i in range(10) for d in range(1, 10-i) for j in range(i+2*d, 10)]
        s =  [p for p in progressions if p[0] != "0"]          # up
        s += [p[::-1] for p in progressions]                   # down
        s += [d*i for d in "123456789" for i in range(3, 11)]  # flat
        yield from sorted(set(int(w) for w in s))
        yield from (int(f*d) for d in count(11) for f in "123456789")
    print(list(islice(agen(), 178))) # Michael S. Branicky, Aug 03 2022

A028987 Repdigit - 1 is prime.

Original entry on oeis.org

3, 4, 6, 8, 44, 444, 888, 2222, 8888, 444444, 888888, 444444444, 888888888, 444444444444, 888888888888, 222222222222222222, 444444444444444444444444444444, 44444444444444444444444444444444
Offset: 1

Views

Author

Keywords

Comments

Next term is 88...8 (72 digits).
Corresponding values of primes are in A096843. - Jaroslav Krizek, Mar 19 2013

Crossrefs

Cf. A010785.

Programs

  • Mathematica
    a[n_]:=NestList[FromDigits[Append[{#},n]]&,n,35]; Union[Join[{3},Flatten[Table[Select[a[n],PrimeQ[#-1]&],{n,2,8,2}]]]] (* Jayanta Basu, May 29 2013 *)
  • PARI
    u=30; for(n=1, u, r=(10^n-1)/9; for(a=1, 9, m=r*a; if(ispseudoprime(m-1), print1(m, ", ")))) \\ Felix Fröhlich, Jul 07 2014

Extensions

Offset corrected and initial term added by Arkadiusz Wesolowski, Aug 14 2011

A028988 Repdigit + 1 is prime.

Original entry on oeis.org

1, 2, 4, 6, 22, 66, 88, 222, 666666, 22222222, 66666666, 666666666, 22222222222, 66666666666, 88888888888888, 88888888888888888, 66666666666666666666, 66666666666666666666666, 88888888888888888888888888888888888
Offset: 1

Views

Author

Keywords

Comments

Next term is 22...2 (36 digits).

Crossrefs

Programs

  • Mathematica
    a[n_]:=NestList[FromDigits[Append[{#},n]]&,n,34]; Union[Join[{1},Flatten[Table[Select[a[n],PrimeQ[#+1]&],{n,2,8,2}]]]] (* Jayanta Basu, May 30 2013 *)
    Select[Flatten[Table[FromDigits[PadRight[{},n,k]],{n,40},{k,9}]],PrimeQ[ #+1]&] (* Harvey P. Dale, Apr 22 2018 *)
  • PARI
    u=30; for(n=1, u, r=(10^n-1)/9; for(a=1, 9, m=r*a; if(ispseudoprime(m+1), print1(m, ", ")))) \\ Michel Marcus, Jan 26 2023; after A028987

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 14 2011

A167782 Numbers that are repdigits with length > 2 in some base.

Original entry on oeis.org

0, 7, 13, 15, 21, 26, 31, 40, 42, 43, 57, 62, 63, 73, 80, 85, 86, 91, 93, 111, 114, 121, 124, 127, 129, 133, 146, 156, 157, 170, 171, 172, 182, 183, 211, 215, 219, 222, 228, 241, 242, 255, 259, 266, 273, 285, 292, 307, 312, 314, 333, 341, 342, 343, 364, 365, 366
Offset: 1

Views

Author

Andrew Weimholt, Nov 12 2009

Keywords

Comments

Definition requires "length > 2" because all numbers n > 2 are trivially represented as "11" in base n-1.
0 included at the suggestion of Franklin T. Adams-Watters (and others) as 0 = 000 in any base.

Examples

			26 is a term because 26_10 = 222_3.
		

Crossrefs

Cf. A010785 (Repdigits (base 10)).
Cf. A167783 (Numbers that are repdigits with length > 2 in more than one base).
Cf. A053696 (Numbers which are repunits in some base).
Cf. A158235 (Numbers n whose square can be represented as a repdigit number in some base < n).

Programs

  • PARI
    /* In PARI versions < 2.6, define: digits(n,b) = if(n=b^2+b+1,d=digits(n,b);if(is_repdigit(d),print(n," = ",d," base ",b));b++)) \\ Michael B. Porter

A167783 Numbers that are repdigits with length > 2 in more than one base.

Original entry on oeis.org

31, 63, 255, 273, 364, 511, 546, 728, 777, 931, 1023, 1365, 1464, 2730, 3280, 3549, 3783, 3906, 4095, 4557, 6560, 7566, 7812, 8191, 9114, 9331, 9841, 10507, 11349, 11718, 13671, 14043, 14763, 15132, 15624, 16383, 18291, 18662, 18915, 19608, 19682, 21845, 22351, 22698
Offset: 1

Views

Author

Andrew Weimholt, Nov 12 2009

Keywords

Comments

Definition requires "length > 2" because all numbers n > 2 are trivially represented as "11" in base n-1.
From Daniel Forgues, Nov 13 2009: (Start)
0 = 00 = 000 = 0000 = 00000 = 000000 = 0000000 = 00000000 = ... in any positional number representation (includes fixed base radix b > 1, mixed base radix with each b_i > 1, i >= 0, such as factorial and primorial based radix...)
The sequence definition should be read as:
Nonnegative integers that are repdigits with length > 2 in more than one fixed base radix b > 1.
Considering all fixed and mixed base radix would include many more nonnegative integers (but not the integers 1 to 6) which are repdigits with length > 2 in more than one radix. (End)
From Bernard Schott, Aug 08 2017: (Start)
In this sequence data, the first number which is repdigit, with length > 2, in more than two bases is the twelfth Mersenne number 4095 with four Brazilian representations: M_12 = 4095 = 111111111111_2 = 333333_4 = 7777_8 = (15 15 15)_16.
The Mersenne number M_15 is the first number which is repdigit in exactly three bases with M_15 = 32767 = 111111111111111_2 = 77777_8 = (31 31 31)_32.
Only two numbers are repunits in more than one base: the Mersenne primes 31 and 8191 (Examples and A119598).
Some numbers are once repunit and once multiple of a Brazilian prime such that Mersenne number M_9 = 511 = 7 * 73 = 111111111_2 = 7 * 111_8 = 777_8.
Some numbers are once repunit and once multiple of a composite repunit such that Mersenne number M_6 = 63 = 3 * 21 = 111111_2 = 3 * 111_4 = 333_4.
Some numbers are repdigits in two different bases: 546 = 666_9 = 222_16. (End)

Examples

			31 is in the list because 31 = 11111_2 = 111_5;
8191 = 1111111111111_2 = 111_90;
10507 = {19 19 19}_23 = 111_102.
		

Crossrefs

Cf. A167782 (numbers that are repdigits with length > 2 in some base).
Cf. A010785 (repdigits (base 10)).
Cf. A053696 (numbers which are repunits in some base).
Cf. A158235 (numbers n whose square is a repdigit in some base < n).
Cf. A290869 (Numbers that are repdigits with length > 2 in more than two bases).

Programs

Extensions

a(41)-a(44) from Bernard Schott, Aug 08 2017
Previous Showing 21-30 of 171 results. Next