cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A032796 Numbers that are congruent to {1, 2, 3, 5, 6} mod 7.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 22, 23, 24, 26, 27, 29, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 68, 69, 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 90, 92, 93, 94, 96, 97, 99
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

If k is a term, then k*(k+1)*(k+2)*...*(k+6)/(k+(k+1)+(k+2)+...+(k+6)) is a multiple of k.

Crossrefs

Programs

  • Magma
    [n: n in [0..120] | n mod 7 in {1, 2, 3, 5, 6}]; // Vincenzo Librandi, Dec 29 2010
  • Mathematica
    #+{1,2,3,5,6}&/@(7*Range[0,15])//Flatten (* or *) LinearRecurrence[ {1,0,0,0,1,-1},{1,2,3,5,6,8},100] (* Harvey P. Dale, Oct 07 2018 *)

Formula

Equals natural numbers minus '4, 7, 11, 14, 18, ...' (= previous term +3, +4, +3, +4, ...).
G.f.: x*(x^5 + x^4 + 2*x^3 + x^2 + x + 1)/((1-x)*(1-x^5)).
a(n) = (m^3 - 6*m^2 + 17*m + 6*(7*floor(n/5)-1))/6, where m = n mod 5. - Luce ETIENNE,Oct 17 2018

A130910 Sum {0<=k<=n, k mod 16} (Partial sums of A130909).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 120, 121, 123, 126, 130, 135, 141, 148, 156, 165, 175, 186, 198, 211, 225, 240, 240, 241, 243, 246, 250, 255, 261, 268, 276, 285, 295, 306, 318, 331, 345, 360, 360, 361, 363, 366, 370, 375, 381, 388
Offset: 0

Views

Author

Hieronymus Fischer, Jun 11 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Mod[Range[0,60],16]] (* Harvey P. Dale, May 30 2020 *)

Formula

a(n)=120*floor(n/16)+A130909(n)*(A130909(n)+1)/2. - G.f.: g(x)=(sum{1<=k<16, k*x^k})/((1-x^16)(1-x)). Also: g(x)=x(15x^16-16x^15+1)/((1-x^16)(1-x)^3).
a(n) = +a(n-1) +a(n-16) -a(n-17). G.f. ( x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8 +10*x^9 +11*x^10 +12*x^11 +13*x^12 +14*x^13 +15*x^14) ) / ( (1+x) *(1+x^2) *(1+x^4) *(1+x^8) *(x-1)^2 ). - R. J. Mathar, Nov 05 2011

A261872 a(n) = phi(n) mod 5, where phi is the Euler totient function.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 1, 4, 1, 4, 0, 4, 2, 1, 3, 3, 1, 1, 3, 3, 2, 0, 2, 3, 0, 2, 3, 2, 3, 3, 0, 1, 0, 1, 4, 2, 1, 3, 4, 1, 0, 2, 2, 0, 4, 2, 1, 1, 2, 0, 2, 4, 2, 3, 0, 4, 1, 3, 3, 1, 0, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 4, 2, 1, 0, 1, 0, 4, 3, 2, 4, 0, 2, 4, 4, 2, 1, 0, 3, 4, 2, 4, 0, 1, 2, 2, 1, 2, 0, 0, 0, 2, 2, 3, 3
Offset: 1

Views

Author

Vincenzo Librandi, Sep 04 2015

Keywords

Crossrefs

Programs

  • Magma
    [EulerPhi(n) mod 5: n in [1..110]];
    
  • Mathematica
    Table[Mod[EulerPhi[n], 5], {n, 110}]
  • PARI
    a(n) = eulerphi(n) % 5; \\ Michel Marcus, Sep 05 2015

Formula

a(n) = A000010(n) mod 5 = A010874(A000010(n)).

Extensions

More terms from Antti Karttunen, Dec 04 2017

A349767 Numbers m such that 2^m - m is divisible by 5.

Original entry on oeis.org

3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57, 63, 74, 76, 77, 83, 94, 96, 97, 103, 114, 116, 117, 123, 134, 136, 137, 143, 154, 156, 157, 163, 174, 176, 177, 183, 194, 196, 197, 203, 214, 216, 217, 223, 234, 236, 237, 243, 254, 256, 257, 263, 274, 276, 277, 283, 294, 296, 297, 303
Offset: 1

Views

Author

Bernard Schott, Dec 10 2021

Keywords

Comments

For every prime p, there are infinitely many numbers m such that 2^m - m (A000325) is divisible by p, here are numbers m corresponding to p = 5.
Equivalently, numbers that are congruent to {3, 14, 16, 17, 23, 34, 36, 37, 43, 54, 56, 57} mod 60, <==> numbers that are congruent to {+-3, +-14, +-16, +-17, +-23, +-34} mod 60.

References

  • Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 4, 1983, page 158, 1993.

Crossrefs

Similar with: A299174 (p = 2), A047257 (p = 3), this sequence (p = 5).

Programs

  • Maple
    filter:= n -> 2^n-n mod 5 = 0 : select(filter, [$1..400]);
  • Mathematica
    Select[Range[300], PowerMod[2, #, 5] == Mod[#, 5] &] (* Amiram Eldar, Dec 10 2021 *)
  • PARI
    isok(m) = Mod(2, 5)^m == Mod(m, 5); \\ Michel Marcus, Dec 10 2021
    
  • Python
    def ok(n): return pow(2, n, 5) == n%5
    print([k for k in range(357) if ok(k)]) # Michael S. Branicky, Dec 10 2021

A010886 Period 7: repeat [1, 2, 3, 4, 5, 6, 7].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4
Offset: 0

Views

Author

Keywords

Comments

Partial sums are given by A130485(n)+n+1. - Hieronymus Fischer, Jun 08 2007
Decimal expansion of 1234567/9999999 = 0.123456712345671234567... - Eric Desbiaux, Nov 03 2008

Crossrefs

Cf. A177160 (decimal expansion of (4502+sqrt(29964677))/6961).

Programs

Formula

a(n) = 1 + (n mod 7). - Paolo P. Lava, Nov 21 2006
a(n) = A010876(n) + 1. G.f.: (Sum_{k=0..6} (k+1)*x^k)/(1-x^7). Also (7*x^8-8*x^7+1)/((1-x^7)*(1-x)^2). - Hieronymus Fischer, Jun 08 2007
From Wesley Ivan Hurt, Jul 18 2016: (Start)
a(n) = a(n-7) for n>6.
a(n) = 1 - 6*floor(n/7) + Sum_{k=1..6} floor((n + k)/7). (End)

A014064 Coefficients of the reciprocal of the 55th cyclotomic polynomial.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Periodic with period length 55. - Ray Chandler, Apr 03 2017

Crossrefs

Cf. similar sequences listed in A240328.

Programs

  • Maple
    with(numtheory,cyclotomic); c := n->series(1/cyclotomic(n,x),x,80);
  • Mathematica
    CoefficientList[Series[1/Cyclotomic[55, x], {x, 0, 200}], x] (* Vincenzo Librandi, Apr 05 2014 *)
    LinearRecurrence[{1, 0, 0, 0, -1, 1, 0, 0, 0, -1, 0, 1, 0, 0, -1, 0, 1, 0, 0, -1, 0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, -1},{1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},81] (* Ray Chandler, Sep 15 2015 *)
  • PARI
    Vec(1/polcyclo(55) + O(x^99)) \\ Michel Marcus, Jan 25 2019

Formula

a(n) = (5*w - 1)*(w - 2)*(w - 3)*(w - 4)*(63*m^4 - 350*m^3 + 630*m^2 - 325*m + 12)*(m - 5)!/(43545600*(m - 11)!), where m = n mod 11 and w = floor(n/11) mod 5. - Luce ETIENNE, Nov 21 2018

Extensions

Name edited by Wolfdieter Lang, Jan 25 2019

A114448 Array a(n,k) = n^k (mod k) read by antidiagonals (k>=1, n>=1).

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 2, 0, 3, 4, 1, 0, 1, 0, 1, 4, 3, 2, 1, 0, 0, 1, 0, 0, 4, 3, 0, 1, 0, 1, 2, 1, 1, 1, 4, 1, 8, 1, 0, 0, 0, 0, 2, 0, 5, 0, 0, 4, 1, 0, 1, 1, 1, 3, 1, 6, 1, 1, 9, 2, 1, 0, 0, 2, 0, 4, 4, 0, 0, 8, 6, 3, 4, 1, 0, 1, 0, 1, 0, 3, 1, 1, 0, 5, 4, 9, 2, 1
Offset: 1

Views

Author

Leroy Quet, Feb 14 2006

Keywords

Comments

Alternate description: triangular array a(n, k) = n^k (mod k) read by rows (n > 1, 0 < k < n). This is equivalent because a(n, k) = a(n-k, k). - David Wasserman, Jan 25 2007

Examples

			2^6 = 64 and 64 (mod 6) is 4. So a(2,6) = 4.
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := Mod[n^k, k]; Table[a[n - k + 1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 12 2012 *)

Extensions

More terms from David Wasserman, Jan 25 2007

A135033 Period 5: repeat [2, 4, 6, 8, 0].

Original entry on oeis.org

2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0
Offset: 0

Views

Author

William A. Tedeschi, Feb 10 2008

Keywords

Comments

"Cheerleader" sequence: reminiscent of the old cheer, "Two, Four, Six, Eight, Who do we appreciate?"

Examples

			a(0) = 2*((0+1) mod 5) = 2*(1 mod 5) = 2.
		

Crossrefs

Cf. A010874.

Programs

  • Mathematica
    PadRight[{},120,{2,4,6,8,0}] (* Harvey P. Dale, Nov 21 2018 *)

Formula

a(n) = 2*((n+1) mod 5).
From R. J. Mathar, Feb 14 2008: (Start)
a(n) = 2*A010874(n+1).
O.g.f.: -2*(1 + 2x + 3x^2 + 4x^3)/((x-1)*(1 + x + x^2 + x^3 + x^4)). (End)

A156551 Period 10: repeat [8,6,0,4,2,2,4,0,6,8].

Original entry on oeis.org

8, 6, 0, 4, 2, 2, 4, 0, 6, 8, 8, 6, 0, 4, 2, 2, 4, 0, 6, 8, 8, 6, 0, 4, 2, 2, 4, 0, 6, 8, 8, 6, 0, 4, 2, 2, 4, 0, 6, 8, 8, 6, 0, 4, 2, 2, 4, 0, 6, 8, 8, 6, 0, 4, 2, 2, 4, 0, 6, 8, 8, 6, 0, 4, 2, 2, 4, 0, 6, 8, 8, 6, 0, 4, 2, 2, 4, 0, 6, 8, 8, 6, 0, 4, 2, 2, 4, 0, 6, 8
Offset: 0

Views

Author

Paul Curtz, Feb 09 2009

Keywords

Comments

See A131715.

Crossrefs

Formula

a(n) = A155110(n) mod 10.
G.f.: 2*(4*x^8-x^7+x^6+x^5+x^3+x^2-x+4)/((1-x)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)). - R. J. Mathar, Feb 23 2009
a(n) = (15*(4-m^4+8*m^3-19*m^2+12*m)-2*(m^3-6*m^2+17*m-18)*(-1)^floor(n/5))/12 where m = n-5*floor(n/5). - Luce ETIENNE, Oct 13 2017

Extensions

Edited by R. J. Mathar, Feb 23 2009
More terms from Jinyuan Wang, Feb 26 2020

A255680 a(n) = n*(n mod 3)*(n mod 5).

Original entry on oeis.org

0, 1, 8, 0, 16, 0, 0, 14, 48, 0, 0, 22, 0, 39, 112, 0, 16, 68, 0, 76, 0, 0, 44, 138, 0, 0, 52, 0, 84, 232, 0, 31, 128, 0, 136, 0, 0, 74, 228, 0, 0, 82, 0, 129, 352, 0, 46, 188, 0, 196, 0, 0, 104, 318, 0, 0, 112, 0, 174, 472, 0, 61, 248, 0, 256, 0, 0, 134, 408, 0, 0, 142, 0, 219, 592, 0, 76, 308, 0, 316, 0, 0, 164, 498, 0, 0, 172, 0
Offset: 0

Views

Author

Zak Seidov, Mar 01 2015

Keywords

Comments

a(n) = 0 for n = 3k and 5k, k=0,1,2,...

Crossrefs

Cf. A255642.

Programs

  • Magma
    [n*(n mod 3)*(n mod 5): n in [0..80]]; // Vincenzo Librandi, Mar 03 2015
  • Mathematica
    Table[x*Mod[x, 3]*Mod[x, 5], {x, 0, 100}]
    LinearRecurrence[{0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1},{0,1,8,0,16,0,0,14,48,0,0,22,0,39,112,0,16,68,0,76,0,0,44,138,0,0,52,0,84,232},100] (* Harvey P. Dale, Sep 06 2015 *)
  • PARI
    vector(101, n, (n-1)*((n-1)%3)*((n-1)%5))
    

Formula

Empirical g.f.: x*(8*x^28 + 6*x^27 + 8*x^25 + 42*x^22 + 16*x^21 + 44*x^18 + 52*x^16 + 14*x^15 + 112*x^13 + 39*x^12 + 22*x^10 + 48*x^7 + 14*x^6 + 16*x^3 + 8*x + 1) / ((x - 1)^2*(x^2 + x + 1)^2*(x^4 + x^3 + x^2 + x + 1)^2*(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)^2). - Colin Barker, Mar 02 2015
a(n) = n*A010872(n)*A010874(n). - Michel Marcus, Mar 03 2015

Extensions

Typo in first Mathematica program corrected by Harvey P. Dale, Jul 03 2021
Previous Showing 41-50 of 57 results. Next