cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A139273 a(n) = n*(8*n - 3).

Original entry on oeis.org

0, 5, 26, 63, 116, 185, 270, 371, 488, 621, 770, 935, 1116, 1313, 1526, 1755, 2000, 2261, 2538, 2831, 3140, 3465, 3806, 4163, 4536, 4925, 5330, 5751, 6188, 6641, 7110, 7595, 8096, 8613, 9146, 9695, 10260, 10841, 11438, 12051, 12680
Offset: 0

Views

Author

Omar E. Pol, Apr 26 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 5, ..., in the square spiral whose vertices are the triangular numbers A000217. Opposite numbers to the members of A139277 in the same spiral.
Also, sequence of numbers of the form d*A000217(n-1) + 5*n with generating functions x*(5+(d-5)*x)/(1-x)^3; the inverse binomial transform is 0,5,d,0,0,.. (0 continued). See Crossrefs. - Bruno Berselli, Feb 11 2011
Even decagonal numbers divided by 2. - Omar E. Pol, Aug 19 2011

Crossrefs

Programs

  • Magma
    [ n*(8*n-3) : n in [0..40] ];  // Bruno Berselli, Feb 11 2011
    
  • Mathematica
    Table[n (8 n - 3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 26}, 40] (* Harvey P. Dale, Feb 02 2012 *)
  • PARI
    a(n)=n*(8*n-3) \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = 8*n^2 - 3*n.
Sequences of the form a(n) = 8*n^2 + c*n have generating functions x{c+8+(8-c)x} / (1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). The inverse binomial transform is 0, c+8, 16, 0, 0, ... (0 continued). This applies to A139271-A139278, positive or negative c. - R. J. Mathar, May 12 2008
a(n) = 16*n + a(n-1) - 11 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Bruno Berselli, Feb 11 2011: (Start)
G.f.: x*(5 + 11*x)/(1 - x)^3.
a(n) = 4*A000217(n) + A051866(n). (End)
a(n) = A028994(n)/2. - Omar E. Pol, Aug 19 2011
a(0)=0, a(1)=5, a(2)=26; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 02 2012
E.g.f.: (8*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 18 2017
Sum_{n>=1} 1/a(n) = 4*log(2)/3 - (sqrt(2)-1)*Pi/6 - sqrt(2)*arccoth(sqrt(2))/3. - Amiram Eldar, Jul 03 2020

A059255 Both sum of n+1 consecutive squares and sum of the immediately following n consecutive squares.

Original entry on oeis.org

0, 25, 365, 2030, 7230, 19855, 45955, 94220, 176460, 308085, 508585, 802010, 1217450, 1789515, 2558815, 3572440, 4884440, 6556305, 8657445, 11265670, 14467670, 18359495, 23047035, 28646500, 35284900, 43100525, 52243425, 62875890, 75172930, 89322755, 105527255, 124002480
Offset: 0

Views

Author

Henry Bottomley, Jan 23 2001

Keywords

Comments

The analog for sums of integers is A059270, and the analog for sums of triangular numbers is A222716. - Jonathan Sondow, Mar 07 2013
In 1879, Dostor gave formulas for all solutions -- see the Dickson link. - Jonathan Sondow, Jun 21 2014

Examples

			a(3) = 2030 = 21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2.
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 68 at p. 152.

Crossrefs

The n+1 consecutive squares start with the square of A014105, while the n consecutive squares start with the square of A001844.
Cf. also A059270, A222716.
Cf. A234319 for nonexistence of analogs for sums of n-th powers, n > 2. - Jonathan Sondow, Apr 23 2014

Programs

  • Magma
    [n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 : n in [0..50]]; // Wesley Ivan Hurt, Jun 21 2014
    
  • Maple
    A059255:=n->n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6; seq(A059255(n), n=0..50); # Wesley Ivan Hurt, Jun 21 2014
  • Mathematica
    Table[1/6(-1+n)(-n+14n^2-36n^3+24n^4),{n,40}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{0,25,365,2030,7230,19855},40] (* Harvey P. Dale, May 09 2011 *)
  • PARI
    a(n)=n*(n+1)*(2*n+1)*(12*n^2+12*n+1)/6 \\ Charles R Greathouse IV, Jul 27 2021

Formula

a(n) = n*(n + 1)*(2n + 1)*(12n^2 + 12n + 1)/6.
a(n) = 4*n^5 + 10*n^4 + (25/3)*n^3 + (5/2)*n^2 + (1/6)*n. [Corrected by Ignacio Larrosa Cañestro, Nov 15 2021]
a(n) = A000330(A046092(n)) - A000330(A014107(n + 1)).
a(n) = A000330(A014106(n)) - A000330(A046092(n)).
From Harvey P. Dale, May 09 2011: (Start)
G.f.: (5x(1+x)(5+x(38+5x)))/(x-1)^6.
a(0)=0, a(1)=25, a(2)=365, a(3)=2030, a(4)=7230, a(5)=19855, a(n) = 6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+6a(n-5)-a(n-6). (End)
a(n) = (4*T(n)-n)^2+(4*T(n)-n+1)^2+...+(4*T(n))^2 = (4*T(n)+1)^2+(4*T(n)+2)^2+...+(4*T(n)+n)^2, where T = A000217. See Boardman (2000). - Jonathan Sondow, Mar 07 2013
a(0)=0, a(n) = 25 + 340*C(n-1,1) + 1325*C(n-1,2) + 2210*C(n-1,3) + 1680*C(n-1,4) + 480*C(n-1,5) for n >= 1, where C(a,b) are binomial coefficients. - Kieren MacMillan, Sep 16 2014
E.g.f.: exp(x)*x*(150 + 945*x + 1010*x^2 + 300*x^3 + 24*x^4)/6. - Stefano Spezia, Aug 05 2024

A135703 a(n) = n*(7*n-2).

Original entry on oeis.org

0, 5, 24, 57, 104, 165, 240, 329, 432, 549, 680, 825, 984, 1157, 1344, 1545, 1760, 1989, 2232, 2489, 2760, 3045, 3344, 3657, 3984, 4325, 4680, 5049, 5432, 5829, 6240, 6665, 7104, 7557, 8024, 8505, 9000, 9509, 10032, 10569, 11120, 11685, 12264, 12857, 13464
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2008

Keywords

Crossrefs

Cf. index to numbers of the form n*(d*n+10-d)/2 in A014106.
Cf. A185019.

Programs

Formula

a(n) = 5*n + 14*binomial(n,2).
From R. J. Mathar, Apr 21 2008: (Start)
O.g.f. x*(5+9*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = a(n-1) + 14*n - 9 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
a(n) = 4*A000217(n) + A051624(n). - Bruno Berselli, Feb 11 2011
E.g.f.: x*(5 + 7*x)*exp(x). - G. C. Greubel, Oct 29 2016

A211377 T(n,k) = ((k + n)^2 - 4*k + 3 + (-1)^k - (k + n - 2)*(-1)^(k + n))/2; n, k > 0, read by antidiagonals.

Original entry on oeis.org

1, 3, 4, 2, 5, 6, 8, 9, 12, 13, 7, 10, 11, 14, 15, 17, 18, 21, 22, 25, 26, 16, 19, 20, 23, 24, 27, 28, 30, 31, 34, 35, 38, 39, 42, 43, 29, 32, 33, 36, 37, 40, 41, 44, 45, 47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 66, 68
Offset: 1

Views

Author

Boris Putievskiy, Feb 07 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). The order of the list:
T(1,1)=1;
T(1,3), T(1,2), T(2,1), T(2,2), T(3,1);
...
T(1,n), T(1,n-1), T(2,n-2), T(2,n-1), T(3,n-2), T(3,n-3)...T(n,1);
...
Descent by snake along two adjacent antidiagonal - step to the west, step to the southwest, step to the east, step to the southwest and so on. The length of each step is 1.
Table contains:
row 1 is alternation of elements A130883 and A033816,
row 2 accommodates elements A100037 in odd places;
column 1 is alternation of elements A000384 and A091823,
column 2 is alternation of elements A071355 and A014106,
column 3 accommodates elements A130861 in even places;
main diagonal accommodates elements A188135 in odd places,
diagonal 1, located above the main diagonal, is alternation of elements A033567 and A033566,
diagonal 2, located above the main diagonal, is alternation of elements A139271 and A033585.

Examples

			The start of the sequence as a table:
   1,  3,  2,   8,   7,  17,  16,  30,  29,  47,  46, ...
   4,  5,  9,  10,  18,  19,  31,  32,  48,  49,  69, ...
   6, 12, 11,  21,  20,  34,  33,  51,  50,  72,  71, ...
  13, 14, 22,  23,  35,  36,  52,  53,  73,  74,  98, ...
  15, 25, 24,  38,  37,  55,  54,  76,  75, 101, 100, ...
  26, 27, 39,  40,  56,  57,  77,  78, 102, 103, 131, ...
  28, 42, 41,  59,  58,  80,  79, 105, 104, 134, 133, ...
  43, 44, 60,  61,  81,  82, 106, 107, 135, 136, 168, ...
  45, 63, 62,  84,  83, 109, 108, 138, 137, 171, 170, ...
  64, 65, 85,  86, 110, 111, 139, 140, 172, 173, 209, ...
  66, 88, 87, 113, 112, 142, 141, 175, 174, 212, 211, ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   3,  4;
   2,  5,  6;
   8,  9, 12, 13;
   7, 10, 11, 14, 15;
  17, 18, 21, 22, 25, 26;
  16, 19, 20, 23, 24, 27, 28;
  30, 31, 34, 35, 38, 39, 42, 43;
  29, 32, 33, 36, 37, 40, 41, 44, 45;
  47, 48, 51, 52, 55, 56, 59, 60, 63, 64;
  46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 66;
  ...
The start of the sequence as an array read by rows, the length of row r is 4*r-3.
First 2*r-2 numbers are from row number 2*r-2 of the triangular array above.
Last  2*r-1 numbers are from row number 2*r-1 of the triangular array above.
   1;
   3,  4,  2,  5,  6;
   8,  9, 12, 13,  7, 10, 11, 14, 15;
  17, 18, 21, 22, 25, 26, 16, 19, 20, 23, 24, 27, 28;
  30, 31, 34, 35, 38, 39, 42, 43, 29, 32, 33, 36, 37, 40, 41, 44, 45;
  47, 48, 51, 52, 55, 56, 59, 60, 63, 64, 46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 66;
  ...
Row number r contains permutation 4*r-3 numbers from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-5*r+5, 2*r*r-5*r+6,...2*r*r-r-4, 2*r*r-r-1, 2*r*r-r.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := ((k+n)^2 - 4k + 3 + (-1)^k - (k+n-2)(-1)^(k+n))/2;
    Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 29 2018 *)
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    result=((t+2)**2-4*j+3+(-1)**j-t*(-1)**(t+2))/2

Formula

As a table:
T(n,k) = ((k + n)^2 - 4*k + 3 + (-1)^k - (k + n - 2)*(-1)^(k + n))/2.
As a linear sequence:
a(n) = ((t + 2)^2 - 4*j + 3 + (-1)^j - t*(-1)^t)/2, where j = (t*t + 3*t + 4)/2 - n and t = int((sqrt(8*n - 7) - 1)/ 2).

A139579 a(n) = 2*n^2 + 15*n.

Original entry on oeis.org

0, 17, 38, 63, 92, 125, 162, 203, 248, 297, 350, 407, 468, 533, 602, 675, 752, 833, 918, 1007, 1100, 1197, 1298, 1403, 1512, 1625, 1742, 1863, 1988, 2117, 2250, 2387, 2528, 2673, 2822, 2975, 3132, 3293, 3458, 3627, 3800, 3977, 4158, 4343, 4532, 4725, 4922, 5123, 5328, 5537
Offset: 0

Views

Author

Omar E. Pol, May 19 2008

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1) + 4*n + 13; a(0) = 0. - Vincenzo Librandi, Nov 24 2010
From Stefano Spezia, Oct 21 2023: (Start)
O.g.f.: x*(17 - 13*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(17 + 2*x). (End)
From Amiram Eldar, Nov 10 2023: (Start)
Sum_{n>=1} 1/a(n) = 182144/675675 - 2*log(2)/15.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/15 - Pi/30 + 67952/675675. (End)

A181890 a(n) = 8*n^2 + 14*n + 5.

Original entry on oeis.org

5, 27, 65, 119, 189, 275, 377, 495, 629, 779, 945, 1127, 1325, 1539, 1769, 2015, 2277, 2555, 2849, 3159, 3485, 3827, 4185, 4559, 4949, 5355, 5777, 6215, 6669, 7139, 7625, 8127, 8645, 9179, 9729, 10295, 10877, 11475, 12089, 12719, 13365, 14027, 14705, 15399, 16109, 16835, 17577
Offset: 0

Views

Author

Paul Curtz, Feb 01 2011

Keywords

Comments

A160050(4*n+1) = A033954(n); A160050(4*n+2) = A001107(n); the third quadrisection is a(n).
First 16 terms of clockwise spiral for odd numbers are as follows:
.
13--15--17--19
| |
11 1---3 21
| | |
9---7---5 23
|
31--29--27--25
.
a(n) comes from the third vertical.
Sequence found by reading the line from 5, in the direction 5, 27, in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Dec 25 2011

Crossrefs

Programs

Formula

a(n) = A160050(4*n+3).
a(n) = (2*n+1)*(4*n+5).
a(n) = a(n-1) + 16*n + 6.
a(n) = 2*a(n-1) - a(n-2) + 16.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (5 + 12*x - x^2)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 25 2011
a(n) = A014635(n+1) - 1. - Omar E. Pol, Dec 25 2011
From Vaclav Kotesovec, Aug 18 2018: (Start)
Sum_{n>=0} 1/a(n) = 2/3 - Pi/12 - log(2)/6 = 0.289342748774193011891907697817...
Sum_{n>=0} (-1)^n / a(n) = (1 + sqrt(2))*Pi/12 - 2/3 - sqrt(2)*log(tan(Pi/8))/6 = 0.173114712692423461587883724528539... (End)
a(n) = A014106(2*n+1). - Rick L. Shepherd, Aug 06 2019
E.g.f.: (5 + 22*x + 8*x^2)*exp(x). - Elmo R. Oliveira, Oct 19 2024

A286108 Square array read by antidiagonals: A(n,k) = T(2*(n AND k), n XOR k), where T(n,k) is sequence A001477 considered as a two-dimensional table, AND is bitwise-and (A004198) and XOR is bitwise-xor (A003987).

Original entry on oeis.org

0, 1, 1, 3, 5, 3, 6, 6, 6, 6, 10, 12, 14, 12, 10, 15, 15, 19, 19, 15, 15, 21, 23, 21, 27, 21, 23, 21, 28, 28, 28, 28, 28, 28, 28, 28, 36, 38, 40, 38, 44, 38, 40, 38, 36, 45, 45, 49, 49, 53, 53, 49, 49, 45, 45, 55, 57, 55, 61, 63, 65, 63, 61, 55, 57, 55, 66, 66, 66, 66, 74, 74, 74, 74, 66, 66, 66, 66, 78, 80, 82, 80, 78, 88, 90, 88, 78, 80, 82, 80, 78
Offset: 0

Views

Author

Antti Karttunen, May 03 2017

Keywords

Comments

The array is read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

Examples

			The top left 0 .. 12 x 0 .. 12 corner of the array:
   0,  1,   3,   6,  10,  15,  21,  28,  36,  45,  55,  66,  78
   1,  5,   6,  12,  15,  23,  28,  38,  45,  57,  66,  80,  91
   3,  6,  14,  19,  21,  28,  40,  49,  55,  66,  82,  95, 105
   6, 12,  19,  27,  28,  38,  49,  61,  66,  80,  95, 111, 120
  10, 15,  21,  28,  44,  53,  63,  74,  78,  91, 105, 120, 144
  15, 23,  28,  38,  53,  65,  74,  88,  91, 107, 120, 138, 161
  21, 28,  40,  49,  63,  74,  90, 103, 105, 120, 140, 157, 179
  28, 38,  49,  61,  74,  88, 103, 119, 120, 138, 157, 177, 198
  36, 45,  55,  66,  78,  91, 105, 120, 152, 169, 187, 206, 226
  45, 57,  66,  80,  91, 107, 120, 138, 169, 189, 206, 228, 247
  55, 66,  82,  95, 105, 120, 140, 157, 187, 206, 230, 251, 269
  66, 80,  95, 111, 120, 138, 157, 177, 206, 228, 251, 275, 292
  78, 91, 105, 120, 144, 161, 179, 198, 226, 247, 269, 292, 324
		

Crossrefs

Cf. A000217 (row 0 & column 0), A014106 (main diagonal).

Programs

  • Mathematica
    T[a_, b_]:=((a + b)^2 + 3a + b)/2; A[n_, k_]:=T[2*BitAnd[n, k], BitXor[n, k]]; Table[A[k, n - k ], {n, 0, 20}, {k, 0, n}] // Flatten (* Indranil Ghosh, May 20 2017 *)
  • Python
    def T(a, b): return ((a + b)**2 + 3*a + b)//2
    def A(n, k): return T(2*(n&k), n^k)
    for n in range(21): print([A(k, n - k) for k in range(n + 1)]) # Indranil Ghosh, May 20 2017
  • Scheme
    (define (A286108 n) (A286108bi (A002262 n) (A025581 n)))
    (define (A286108bi row col) (let ((a (* 2 (A004198bi row col))) (b (A003987bi row col))) (/ (+ (expt (+ a b) 2) (* 3 a) b) 2))) ;; Here A003987bi and A004198bi implement bitwise-xor (A003987) and bitwise-and (A004198).
    

Formula

A(n,k) = T(2*A004198(n,k), A003987(n,k)), where T(n,k) is sequence A001477 considered as a two-dimensional table, that is, as a pairing function from [0, 1, 2, 3, ...] x [0, 1, 2, 3, ...] to [0, 1, 2, 3, ...].

A139576 a(n) = n*(2*n + 9).

Original entry on oeis.org

0, 11, 26, 45, 68, 95, 126, 161, 200, 243, 290, 341, 396, 455, 518, 585, 656, 731, 810, 893, 980, 1071, 1166, 1265, 1368, 1475, 1586, 1701, 1820, 1943, 2070, 2201, 2336, 2475, 2618, 2765, 2916, 3071, 3230, 3393, 3560, 3731, 3906
Offset: 0

Views

Author

Omar E. Pol, May 19 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n^2 + 9*n.
a(n) = a(n-1) + 4*n + 7 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(11 - 7*x)/(1-x)^3.
E.g.f.: exp(x)*x*(11 + 2*x).
a(n) = A277979(n)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A139577 a(n) = n*(2*n + 11).

Original entry on oeis.org

0, 13, 30, 51, 76, 105, 138, 175, 216, 261, 310, 363, 420, 481, 546, 615, 688, 765, 846, 931, 1020, 1113, 1210, 1311, 1416, 1525, 1638, 1755, 1876, 2001, 2130, 2263, 2400, 2541, 2686, 2835, 2988, 3145, 3306, 3471, 3640, 3813, 3990
Offset: 0

Views

Author

Omar E. Pol, May 19 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n^2 + 11*n.
a(n) = a(n-1) + 4*n + 9 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(13 - 9*x)/(1-x)^3.
E.g.f.: exp(x)*x*(13 + 2*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A139578 a(n) = n*(2*n + 13).

Original entry on oeis.org

0, 15, 34, 57, 84, 115, 150, 189, 232, 279, 330, 385, 444, 507, 574, 645, 720, 799, 882, 969, 1060, 1155, 1254, 1357, 1464, 1575, 1690, 1809, 1932, 2059, 2190, 2325, 2464, 2607, 2754, 2905, 3060, 3219, 3382, 3549, 3720, 3895, 4074, 4257, 4444, 4635, 4830, 5029
Offset: 0

Views

Author

Omar E. Pol, May 19 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n^2 + 13*n.
a(n) = a(n-1) + 4*n + 11 (with a(0)=0). - Vincenzo Librandi, Nov 24 2010
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: x*(15 - 11*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(15 + 2*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Previous Showing 11-20 of 56 results. Next