cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A064043 Number of length 3 walks on an n-dimensional hypercubic lattice starting at the origin and staying in the nonnegative part.

Original entry on oeis.org

0, 3, 18, 51, 108, 195, 318, 483, 696, 963, 1290, 1683, 2148, 2691, 3318, 4035, 4848, 5763, 6786, 7923, 9180, 10563, 12078, 13731, 15528, 17475, 19578, 21843, 24276, 26883, 29670, 32643, 35808, 39171, 42738, 46515, 50508, 54723, 59166, 63843, 68760, 73923, 79338
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Crossrefs

Number of walks length 0, 1 and 2 are A000012, A001477 and A002378.
Cf. A084990.

Programs

  • Maple
    seq(sum(3*n+n^2-1, k=1..n), n=0..39); # Zerinvary Lajos, Jan 28 2008
  • Mathematica
    Table[n*(n^2 + 3n -1), {n,0,50}] (* G. C. Greubel, Jul 20 2017 *)
  • PARI
    a(n) = { n*(n^2 + 3*n - 1) } \\ Harry J. Smith, Sep 06 2009

Formula

a(n) = n*(n^2 + 3*n - 1) = n*A014209(n) = A064044(n, 3).
a(n) = a(n-1) + 3*A002378(n-1) + 6*A001477(n-1) + 3*A000012(n-1).
G.f.: 3*x*(1+2*x-x^2)/(1-x)^4. - Colin Barker, Apr 19 2012
E.g.f.: (x^3 + 6*x^2 + 3*x)*exp(x). - G. C. Greubel, Jul 20 2017
a(n) = A084990(n)/3. - Alois P. Heinz, Jul 21 2017

A156140 Accumulation of Stern's diatomic series: a(0)=-1, a(1)=0, and a(n+1) = (2e(n)+1)*a(n) - a(n-1) for n > 1, where e(n) is the highest power of 2 dividing n.

Original entry on oeis.org

-1, 0, 1, 3, 2, 7, 5, 8, 3, 13, 10, 17, 7, 18, 11, 15, 4, 21, 17, 30, 13, 35, 22, 31, 9, 32, 23, 37, 14, 33, 19, 24, 5, 31, 26, 47, 21, 58, 37, 53, 16, 59, 43, 70, 27, 65, 38, 49, 11, 50, 39, 67, 28, 73, 45, 62, 17, 57, 40, 63, 23, 52, 29, 35, 6, 43, 37, 68, 31, 87, 56, 81, 25, 94, 69
Offset: 0

Views

Author

Arie Werksma (Werksma(AT)Tiscali.nl), Feb 04 2009

Keywords

Crossrefs

From Yosu Yurramendi, Mar 09 2018: (Start)
a(2^m + 0) = A000027(m), m >= 0.
a(2^m + 1) = A002061(m+2), m >= 1.
a(2^m + 2) = A002522(m), m >= 2.
a(2^m + 3) = A033816(m-1), m >= 2.
a(2^m + 4) = A002061(m), m >= 2.
a(2^m + 5) = A141631(m), m >= 3.
a(2^m + 6) = A084849(m-1), m >= 3.
a(2^m + 7) = A056108(m-1), m >= 3.
a(2^m + 8) = A000290(m-1), m >= 3.
a(2^m + 9) = A185950(m-1), m >= 4.
a(2^m + 10) = A144390(m-1), m >= 4.
a(2^m + 12) = A014106(m-2), m >= 4.
a(2^m + 16) = A028387(m-3), m >= 4.
a(2^m + 18) = A250657(m-4), m >= 5.
a(2^m + 20) = A140677(m-3), m >= 5.
a(2^m + 32) = A028872(m-2), m >= 5.
a(2^m - 1) = A005563(m-1), m >= 0.
a(2^m - 2) = A028387(m-2), m >= 2.
a(2^m - 3) = A033537(m-2), m >= 2.
a(2^m - 4) = A008865(m-1), m >= 3.
a(2^m - 7) = A140678(m-3), m >= 3.
a(2^m - 8) = A014209(m-3), m >= 4.
a(2^m - 16) = A028875(m-2), m >= 5.
a(2^m - 32) = A108195(m-5), m >= 6.
(End)

Programs

  • Maple
    A156140 := proc(n)
        option remember ;
        if n <= 1 then
            n-1 ;
        else
            (2*A007814(n-1)+1)*procname(n-1)-procname(n-2) ;
        end if;
    end proc:
    seq(A156140(n),n=0..80) ; # R. J. Mathar, Mar 14 2009
  • Mathematica
    Fold[Append[#1, (2 IntegerExponent[#2, 2] + 1) #1[[-1]] - #1[[-2]] ] &, {-1, 0}, Range[73]] (* Michael De Vlieger, Mar 09 2018 *)
  • PARI
    first(n)=my(v=vector(n+1)); v[1]=-1; v[2]=0; for(k=1,n-1,v[k+2]=(2*valuation(k,2)+1)*v[k+1] - v[k]); v \\ Charles R Greathouse IV, Apr 05 2016
    
  • PARI
    fusc(n)=my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b
    a(n)=my(m=1,s,t); if(n==0, return(-1)); while(n%2==0, s+=fusc(n>>=1)); while(n>1, t=logint(n,2); n-=2^t; s+=m*fusc(n)*(t^2+t+1); m*=-t); m*(n-1) + s \\ Charles R Greathouse IV, Dec 13 2016
    
  • R
    a <- c(0,1)
    maxlevel <- 6 # by choice
    for(m in 1:maxlevel) {
      a[2^(m+1)] <- m + 1
      for(k in 1:(2^m-1)) {
        r <- m - floor(log2(k)) - 1
        a[2^r*(2*k+1)] <- a[2^r*(2*k)] + a[2^r*(2*k+2)]
    }}
    a
    # Yosu Yurramendi, May 08 2018

Formula

Let b(n) = A002487(n), Stern's diatomic series.
a(n+1)*b(n) - a(n)*b(n+1) = 1 for n >= 0.
a(2n+1) = a(n) + a(n+1) + b(n) + b(n+1) for n >= 0.
a(2n) = a(n) + b(n) for n >= 0.
a(2^n + k) = -n*a(k) + (n^2 + n + 1)*b(k) for 0 <= k <= 2^n.
b(2^n + k) = -a(k) + (n + 1)*b(k) for 0 <= k <= 2^n.
a(2^m + k) = b(2^m+k)*m + b(k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 09 2018
a(2^(m+1)+2^m+1) = 2*m+1, m >= 0. - Yosu Yurramendi, Mar 09 2018
From Yosu Yurramendi, May 08 2018: (Start)
a(2^m) = m, m >= 0.
a(2^r*(2*k+1)) = a(2^r*(2*k)) + a(2^r*(2*k+2)), r = m - floor(log_2(k)) - 1, m > 0, 1 <= k < 2^m.
(End)

A163253 An interspersion: the order array of the odd-numbered columns of the double interspersion at A161179.

Original entry on oeis.org

1, 4, 2, 9, 5, 3, 16, 10, 7, 6, 25, 17, 13, 11, 8, 36, 26, 21, 18, 14, 12, 49, 37, 31, 27, 22, 19, 15, 64, 50, 43, 38, 32, 28, 23, 20, 81, 65, 57, 51, 44, 39, 33, 29, 24, 100, 82, 73, 66, 58, 52, 45, 40, 34, 30, 121, 101, 91, 83, 74, 67, 59, 53, 46, 41, 35
Offset: 1

Views

Author

Clark Kimberling, Jul 23 2009

Keywords

Comments

A permutation of the natural numbers.
Row 1 consists of the squares.
Beginning with row 5, the columns obey a 3rd-order recurrence:
c(n)=c(n-1)+c(n-2)-c(n-3)+1; thus disregarding row 1, the nonsquares are partitioned by this recurrence.
Except for initial terms, the first ten rows match A000290, A002522, A002061, A059100, A014209, A117950, A027688, A087475, A027689, A117951, and the first column, A035106.

Examples

			Corner:
1....4....9...16...25
2....5...10...17...26
3....7...13...21...31
6...11...18...27...38
The double interspersion A161179 begins thus:
1....4....7...12...17...24
2....3....8...11...18...23
5....6...13...16...25...30
9...10...19...22...33...38
Expel the even-numbered columns, leaving
1....7...17...
2....8...18...
5...13...25...
9...19...33...
Then replace each of those numbers by its rank when all the numbers are jointly ranked.
		

Crossrefs

Formula

Let S(n,k) denote the k-th term in the n-th row. Three cases:
S(1,k)=k^2;
if n is even, then S(n,k)=k^2+(n-2)k+(n^2-2*n+4)/4;
if n>=3 is odd, then S(n,k)=k^2+(n-2)k+(n^2-2*n+1)/4.

Extensions

Edited and augmented by Clark Kimberling, Jul 24 2009

A163257 An interspersion: the order array of the even-numbered columns (after swapping the first two rows) of the double interspersion at A161179.

Original entry on oeis.org

1, 5, 2, 11, 6, 3, 19, 12, 8, 4, 29, 20, 15, 10, 7, 41, 30, 24, 18, 14, 9, 55, 42, 35, 28, 23, 17, 13, 71, 56, 48, 40, 34, 27, 22, 16, 89, 72, 63, 54, 47, 39, 33, 26, 21, 109, 90, 80, 70, 62, 53, 46, 38, 32, 25, 131, 110, 99, 88, 79, 69, 61, 52, 45, 37, 31, 155, 132, 120, 108
Offset: 1

Views

Author

Clark Kimberling, Jul 24 2009

Keywords

Comments

A permutation of the natural numbers.
Beginning at row 6, the columns obey a 3rd-order recurrence:
c(n)=c(n-1)+c(n-2)-c(n-3)+1.
Except for initial terms, the first seven rows are A028387, A002378, A005563, A028552, A008865, A014209, A028873, and the first column, A004652.

Examples

			Corner:
1....5...11...19
2....6...12...20
3....8...15...24
4...10...18...28
The double interspersion A161179 begins thus:
1....4....7...12...17...24
2....3....8...11...18...23
5....6...13...16...25...30
9...10...19...22...33...38
Expel the odd-numbered columns and then swap rows 1 and 2, leaving
3....11...23...39
4....12...24...40
6....16...30...48
10...22...38...58
Then replace each of those numbers by its rank when all the numbers are jointly ranked.
		

Crossrefs

Formula

Let S(n,k) denote the k-th term in the n-th row. Four cases:
S(1,k)=k^2+k-1
S(2,k)=k^2+k
if n>1 is odd, then S(n,k)=k^2+(n-1)k+(n-1)(n-3)/4
if n>2 is even, then S(n,k)= k^2+(n-1)k+n(n-4)/4.

A220508 T(n,k) = n^2 + k if k <= n, otherwise T(n,k) = k*(k + 2) - n; square array T(n,k) read by ascending antidiagonals (n >= 0, k >= 0).

Original entry on oeis.org

0, 1, 3, 4, 2, 8, 9, 5, 7, 15, 16, 10, 6, 14, 24, 25, 17, 11, 13, 23, 35, 36, 26, 18, 12, 22, 34, 48, 49, 37, 27, 19, 21, 33, 47, 63, 64, 50, 38, 28, 20, 32, 46, 62, 80, 81, 65, 51, 39, 29, 31, 45, 61, 79, 99, 100, 82, 66, 52, 40, 30, 44, 60, 78, 98, 120
Offset: 0

Views

Author

Omar E. Pol, Feb 09 2013

Keywords

Comments

This sequence consists of 0 together with a permutation of the natural numbers. The nonnegative integers (A001477) are arranged in the successive layers from T(0,0) = 0. The n-th layer start with T(n,1) = n^2. The n-th layer is formed by the first n+1 elements of row n and the first n elements in increasing order of the column n.
The first antidiagonal is formed by odd numbers: 1, 3. The second antidiagonal is formed by even numbers: 4, 2, 8. The third antidiagonal is formed by odd numbers: 9, 5, 7, 15. And so on.
It appears that in the n-th layer there is at least a prime number <= g and also there is at least a prime number > g, where g is the number on the main diagonal, the n-th oblong number A002378(n), if n >= 1.

Examples

			The second layer is [4, 5, 6, 7, 8] which looks like this:
  .  .  8
  .  .  7,
  4, 5, 6,
Square array T(0,0)..T(10,10) begins:
    0,   3,   8,  15,  24,  35,  48,  63,  80,  99, 120,...
    1,   2,   7,  14,  23,  34,  47,  62,  79,  98, 119,...
    4,   5,   6,  13,  22,  33,  46,  61,  78,  97, 118,...
    9,  10,  11,  12,  21,  32,  45,  60,  77,  96, 117,...
   16,  17,  18,  19,  20,  31,  44,  59,  76,  95, 118,...
   25,  26,  27,  28,  29,  30,  43,  58,  75,  94, 117,...
   36,  37,  38,  39,  40,  41,  42,  57,  74,  93, 114,...
   49,  50,  51,  52,  53,  54,  55,  56,  73,  92, 113,...
   64,  65,  66,  67,  68,  69,  70,  71,  72,  91, 112,...
   81,  82,  83,  84,  85,  86,  87,  88,  89,  90, 111,...
  100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,...
  ...
		

Crossrefs

Column 1 is A000290. Main diagonal is A002378. Column 2 is essentially A002522. Row 1 is A005563. Row 2 gives the absolute terms of A008865.

Formula

From Petros Hadjicostas, Mar 10 2021: (Start)
T(n,k) = (A342354(n,k) - 1)/2.
O.g.f.: (x^4*y^3 + 3*x^3*y^4 + x^4*y^2 - 10*x^3*y^3 - x^2*y^4 + 3*x^3*y^2 + x^2*y^3 - 4*x^3*y + 8*x^2*y^2 + 3*x^2*y + x*y^2 + x^2 - 10*x*y - y^2 + x + 3*y)/((1 - x)^3*(1 - y)^3*(1 - x*y)^2). (End)

Extensions

Name edited by Petros Hadjicostas, Mar 10 2021

A213921 Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places clockwise. Table T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 8, 9, 13, 17, 14, 6, 16, 21, 26, 22, 11, 12, 25, 31, 37, 32, 18, 15, 20, 36, 43, 50, 44, 27, 23, 24, 30, 49, 57, 65, 58, 38, 33, 19, 35, 42, 64, 73, 82, 74, 51, 45, 28, 29, 48, 56, 81, 91, 101, 92, 66, 59, 39, 34, 41, 63, 72, 100, 111
Offset: 1

Views

Author

Boris Putievskiy, Mar 05 2013

Keywords

Comments

A permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Enumeration table T(n,k) is layer by layer. The order of the list:
T(1,1)=1;
T(1,2), T(2,1), T(2,2);
. . .
T(1,n), T(3,n), ... T(n,3), T(n,1), T(2,n), T(4,n), ... T(n,4), T(n,2);
...

Examples

			The start of the sequence as table:
   1   2   5  10  17  26 ...
   3   4   8  14  22  32 ...
   7   9   6  11  18  27 ...
  13  16  12  15  23  33 ...
  21  25  20  24  19  28 ...
  31  36  30  35  29  34 ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   2,  3;
   5,  4,  7;
  10,  8,  9, 13;
  17, 14,  6, 16, 21;
  26, 22, 11, 12, 25, 31;
  ...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i > j:
       result=i*i-(j%2)*i+2-int((j+2)/2)
    else:
       result=j*j-((i%2)+1)*j + int((i+3)/2)

Formula

As a table:
T(n,k) = n*n - (k mod 2)*n + 2 - floor((k+2)/2), if n>k;
T(n,k) = k*k - ((n mod 2)+1)*k + floor((n+3)/2), if n<=k.
As a linear sequence:
a(n) = i*i - (j mod 2)*i + 2 - floor((j+2)/2), if i>j;
a(n) = j*j - ((i mod 2)+1)*j + floor((i+3)/2), if i<=j; where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2).

A248697 Primes of the form k+(k+3)^2 where k is a nonnegative integer.

Original entry on oeis.org

17, 53, 107, 179, 269, 503, 647, 809, 1187, 1637, 1889, 2447, 2753, 3779, 4157, 4967, 5399, 5849, 6317, 6803, 7307, 7829, 8369, 10709, 11987, 12653, 13337, 14759, 15497, 16253, 17027, 19457, 26729, 29753, 31859, 32939, 35153, 38609, 42227, 44729, 47303, 52667, 55457, 61253, 65789, 68903, 70487, 72089, 73709, 75347
Offset: 1

Views

Author

Michael Savoric, Oct 11 2014

Keywords

Comments

Primes > 3 in A014209. - Klaus Purath, Dec 10 2020

Crossrefs

Cf. A014209.

Programs

  • Magma
    [a: n in [0..250] | IsPrime(a) where a is n^2+7*n+9]; // Vincenzo Librandi, Oct 12 2014
    
  • Maple
    A248697:=n->`if`(isprime(n+(n+3)^2), n+(n+3)^2, NULL): seq(A248697(n), n=1..5*10^2); # Wesley Ivan Hurt, Oct 11 2014
  • Mathematica
    f[x_] := x + (x + 3)^2;
    n = 50; result = {}; counter = 0; number = 0;
    While[counter < n,
    value = f[number];
    If[PrimeQ[value] == True, AppendTo[result, value];counter = counter + 1];
    number = number + 1];result
    Select[Table[n + (n + 3)^2, {n, 0, 300}], PrimeQ] (* Vincenzo Librandi, Oct 12 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(n^2+7*n+9),print1(n^2+7*n+9,", "))) \\ Derek Orr, Oct 12 2014

A117012 Primes of the form n^2+5*n+c (n>=0), where c=3 for even n and c=-3 for odd n.

Original entry on oeis.org

3, 17, 47, 107, 173, 269, 503, 641, 809, 983, 1187, 1637, 2441, 2753, 4157, 4547, 4967, 5393, 5849, 6311, 6803, 7829, 8363, 9497, 11981, 12653, 13331, 14753, 15497, 17027, 22943, 26723, 29753, 31859, 32933, 38609, 39791, 42221, 47297, 49943, 58313
Offset: 1

Views

Author

Roger L. Bagula, Apr 16 2006

Keywords

References

  • Harvey Cohn, Advanced Number Theory,Dover, New York, 1962, page 155.

Crossrefs

Programs

  • Maple
    select(isprime, [seq(n^2 + 5*n + (-1)^n * 3, n=1..1000)]); # Robert Israel, Aug 25 2025
  • Mathematica
    f[n_] := If[Mod[n, 2] == 1, n^2 + 5*n - 3, n^2 + 5*n + 3] b = Flatten[Table[If[PrimeQ[f[n]] == True, f[n], {}], {n, 1, 100}]]
  • PARI
    for(n=1, 250, k=n^2+5*n+3-6*(n%2); if(isprime(k), print1(k,", ")))

Extensions

Edited and extended by N. J. A. Sloane, Apr 17 2006

A144204 Array A(k,n) = (n+k-2)*(n-1) - 1 (k >= 1, n >= 1) read by antidiagonals.

Original entry on oeis.org

-1, -1, 0, -1, 1, 3, -1, 2, 5, 8, -1, 3, 7, 11, 15, -1, 4, 9, 14, 19, 24, -1, 5, 11, 17, 23, 29, 35, -1, 6, 13, 20, 27, 34, 41, 48, -1, 7, 15, 23, 31, 39, 47, 55, 63, -1, 8, 17, 26, 35, 44, 53, 62, 71, 80, -1, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, -1, 10, 21, 32, 43, 54, 65, 76, 87
Offset: 1

Views

Author

Jonathan Vos Post, Sep 13 2008

Keywords

Comments

Arises in complete intersection threefolds,
Also can be produced as a triangle read by rows: a(n, k) = nk - (n + k). - Alonso del Arte, Jul 09 2009
Kosta: Let X be a complete intersection of two hypersurfaces F_n and F_k in the projective space P^5 of degree n and k respectively. with n=>k, such that the singularities of X are nodal and F_k is smooth. We prove that if the threefold X has at most (n+k-2)*(n-1) - 1 singular points, then it is factorial.

Examples

			From _R. J. Mathar_, Jul 10 2009: (Start)
The rows A(n,1), A(n,2), A(n,3), etc., are :
.-1...0...3...8..15..24..35..48..63..80..99.120.143.168 A067998
.-1...1...5..11..19..29..41..55..71..89.109.131.155.181 A028387
.-1...2...7..14..23..34..47..62..79..98.119.142.167.194 A008865
.-1...3...9..17..27..39..53..69..87.107.129.153.179.207 A014209
.-1...4..11..20..31..44..59..76..95.116.139.164.191.220 A028875
.-1...5..13..23..35..49..65..83.103.125.149.175.203.233 A108195
.-1...6..15..26..39..54..71..90.111.134.159.186.215.246
.-1...7..17..29..43..59..77..97.119.143.169.197.227.259
.-1...8..19..32..47..64..83.104.127.152.179.208.239.272
.-1...9..21..35..51..69..89.111.135.161.189.219.251.285
.-1..10..23..38..55..74..95.118.143.170.199.230.263.298
.-1..11..25..41..59..79.101.125.151.179.209.241.275.311
.-1..12..27..44..63..84.107.132.159.188.219.252.287.324
.-1..13..29..47..67..89.113.139.167.197.229.263.299.337 Cf. A126719.
(End)
As a triangle:
. 0
. 1, 3
. 2, 5, 8
. 3, 7, 11, 15
. 4, 9, 14, 19, 24
. 5, 11, 17, 23, 29, 35
. 6, 13, 20, 27, 34, 41, 48
. 7, 15, 23, 31, 39, 47, 55, 63
. 8, 17, 26, 35, 44, 53, 62, 71, 80
		

Crossrefs

Row 1 = A067998(n) for n>0. Row 2 = A028387(n) for n>0.Column 1 = -A000012(n). Column 2 = A001477. Column 3 = A005408(k). Column 4 = A016789(k+1). Column 5 = A004767(k+2). Column 6 = A016897(k+3). Column 7 = A016969(k+4). Column 8 = A017053(k+5). Column 9 = A004771(k+6). Column 10 = A017257(k+7).

Programs

  • Maple
    A := proc(k,n) (n+k-2)*(n-1)-1 ; end: for d from 1 to 13 do for n from 1 to d do printf("%d,",A(d-n+1,n)) ; od: od: # R. J. Mathar, Jul 10 2009
  • Mathematica
    a[n_, k_] := a[n, k] = n*k - (n + k); ColumnForm[Table[a[n, k], {n, 10}, {k, n}], Center] (* Alonso del Arte, Jul 09 2009 *)

Formula

A[k,n] = (n+k-2)*(n-1) - 1.
Antidiagonal sum: Sum_{n=1..d} A(d-n+1,n) = d*(d^2-2d-1)/2 = -A110427(d). - R. J. Mathar, Jul 10 2009

Extensions

Duplicate of 6th antidiagonal removed by R. J. Mathar, Jul 10 2009
Keyword:tabl added by R. J. Mathar, Jul 23 2009
Edited by N. J. A. Sloane, Sep 14 2009. There was a comment that the defining formula was wrong, but it is perfectly correct.

A188667 Ordered (2,2)-selections from the multiset {1,1,2,2,3,3,...,n,n}.

Original entry on oeis.org

0, 0, 3, 21, 72, 180, 375, 693, 1176, 1872, 2835, 4125, 5808, 7956, 10647, 13965, 18000, 22848, 28611, 35397, 43320, 52500, 63063, 75141, 88872, 104400, 121875, 141453, 163296, 187572, 214455, 244125, 276768, 312576, 351747, 394485, 441000
Offset: 0

Views

Author

Thomas Wieder, Apr 07 2011

Keywords

Comments

Number of ordered (2,2)-selections which can be taken from the first 2n elements of A008619, the positive integers repeated. Order does count among subselections, e.g. [[1,1],[2,2]] and [[2,2],[1,1]] are different (2,2)-selections. Order does not count within a subselection, e.g. [1,3] is equivalent to [3,1].
Many thanks to Alois P. Heinz, Joerg Arndt, and Olivier Gérard for pointing out bugs in earlier versions of this sequence and for their comments!
The number of (not ordered) (2,2)-selections from natural numbers repeated = A008619 is equal to A086602 (observed by Alois P. Heinz).
The number of ordered (1,1)-selections from natural numbers repeated = A008619 is equal to the squares = A000290.
The number of ordered (1,1)-selections from the natural numbers = A000027 ("[1,2,3,...,n]-multiset") is equal to the Oblong numbers = A002378.
The number of ordered (2,2)-selections from the natural numbers = A000027 ("[1,2,3,...,n]-multiset") is equal to A033487.
The number of (not ordered) (1,1)-selections from the natural numbers = A000027 ("[1,2,3,...,n]-multiset") is equal to the triangular numbers = A000217.
The number of (not ordered) (2,2)-selections from the natural numbers = A000027 ("[1,2,3,...,n]-multiset") is equal to the tritriangular numbers = A050534.
For n>0, the terms of this sequence are related to A014209 by a(n) = sum( i*A014209(i), i=0..n-1 ). [Bruno Berselli, Dec 20 2013]

Examples

			Example: For n=3 there are 21 ordered selections of the type (2,2):
[[1,1],[2,2]], [[1,2],[1,2]], [[2,2],[1,1]], [[1,2],[2,3]],
[[1,3],[2,2]], [[2,2],[1,3]], [[2,3],[1,2]], [[1,1],[2,3]],
[[1,2],[1,3]], [[1,3],[1,2]], [[2,3],[1,1]], [[1,1],[3,3]],
[[1,3],[1,3]], [[3,3],[1,1]], [[1,2],[3,3]], [[1,3],[2,3]],
[[2,3],[1,3]], [[3,3],[1,2]], [[2,2],[3,3]], [[2,3],[2,3]],
[[3,3],[2,2]].
		

Crossrefs

Cf. A014209.

Programs

  • Mathematica
    Table[n*(n + 4)*(n - 1)^2/4, {n, 0, 100}] (* Vincenzo Librandi, Oct 18 2012 *)

Formula

a(n) = n*(n+4)*(n-1)^2/4.
G.f.: 3*x^2*(x^2-2*x-1) / (x-1)^5.
Previous Showing 11-20 of 25 results. Next