cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 64 results. Next

A212439 a(n) = 2*n + A181935(n) mod 2.

Original entry on oeis.org

1, 3, 5, 6, 8, 11, 13, 15, 17, 19, 20, 22, 24, 27, 29, 30, 32, 35, 37, 38, 40, 42, 45, 47, 49, 51, 52, 54, 56, 59, 61, 63, 65, 67, 69, 70, 72, 74, 77, 79, 81, 83, 85, 86, 88, 90, 93, 94, 96, 99, 101, 102, 104, 106, 108, 111, 113, 115, 116, 118, 120, 123, 125
Offset: 0

Views

Author

Reinhard Zumkeller, May 17 2012

Keywords

Comments

A212444 gives iterations starting from 0.

Crossrefs

Programs

  • Haskell
    a212439 n = 2 * n + a212412 n
  • Mathematica
    f[n_, e_] := Module[{d = IntegerDigits[n, 2^e]}, Length[Split[d][[-1]]] - If[SameQ @@ d && Mod[n, 2^e] < 2^(e - 1), 1, 0]]; a[n_] := 2*n + Mod[Max[Table[f[n, e], {e, Range[Max[1, Floor[Log2[n]]]]}]], 2]; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Apr 08 2025 *)

Formula

a(n) = 2*n + A212412(n): concatenation of binary representation of n and the parity of its curling number.

A222390 Nonnegative integers m such that 10*m*(m+1)+1 is a square.

Original entry on oeis.org

0, 3, 15, 132, 588, 5031, 22347, 191064, 848616, 7255419, 32225079, 275514876, 1223704404, 10462309887, 46468542291, 397292260848, 1764580902672, 15086643602355, 67007605759263, 572895164628660, 2544524437949340, 21754929612286743, 96624921036315675
Offset: 1

Views

Author

Bruno Berselli, Feb 18 2013

Keywords

Comments

a(n+1)/a(n) tends alternately to (7+2*sqrt(10))/3 and (13+4*sqrt(10))/3; a(n+2)/a(n) tends to A176398^2.
Subsequence of A014601.

Crossrefs

Cf. nonnegative integers m such that k*m*(m+1)+1 is a square: A001652 (k=2), A001921 (k=3), A001477 (k=4), A053606 (k=5), A105038 (k=6), A105040 (k=7), A053141 (k=8), this sequence (k=10), A105838 (k=11), A061278 (k=12), A104240 (k=13); A105063 (k=17), A222393 (k=18), A101180 (k=19), A077259 (k=20) [incomplete list].
Cf. A221875.

Programs

  • Magma
    m:=22; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(3*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2))));
    
  • Magma
    I:=[0,3,15,132,588]; [n le 5 select I[n] else Self(n-1) +38*Self(n-2)-38*Self(n-3)-Self(n-4)+Self(n-5): n in [1..25]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    LinearRecurrence[{1, 38, -38, -1, 1}, {0, 3, 15, 132, 588}, 23]
    CoefficientList[Series[3 x (1 + 4 x + x^2)/((1 - x) (1 - 6 x - x^2) (1 + 6 x - x^2)), {x, 0, 25}], x] (* Vincenzo Librandi, Aug 18 2013 *)
  • Maxima
    makelist(expand(-1/2+((5+(-1)^n*sqrt(10))*(3-sqrt(10))^(2*floor(n/2))+(5-(-1)^n*sqrt(10))*(3+sqrt(10))^(2*floor(n/2)))/20), n, 1, 23);
    
  • PARI
    x='x+O('x^30); concat([0], Vec(3*x*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2)))) \\ G. C. Greubel, Jul 15 2018

Formula

G.f.: 3*x*(1+4*x+x^2)/((1-x)*(1-6*x-x^2)*(1+6*x-x^2)).
a(n) = a(-n+1) = a(n-1)+38*a(n-2)-38*a(n-3)-a(n-4)+a(n-5).
a(n) = -1/2+((5+t*(-1)^n)*(3-t)^(2*floor(n/2))+(5-t*(-1)^n)*(3+t)^(2*floor(n/2)))/20, where t=sqrt(10).
2*a(n)+1 = A221875(n).

A284307 Permutation of the natural numbers partitioned into quadruples [4k-3, 4k, 4k-2, 4k-1], k > 0.

Original entry on oeis.org

1, 4, 2, 3, 5, 8, 6, 7, 9, 12, 10, 11, 13, 16, 14, 15, 17, 20, 18, 19, 21, 24, 22, 23, 25, 28, 26, 27, 29, 32, 30, 31, 33, 36, 34, 35, 37, 40, 38, 39, 41, 44, 42, 43, 45, 48, 46, 47, 49, 52, 50, 51, 53, 56, 54, 55, 57, 60, 58, 59, 61, 64, 62, 63, 65, 68, 66, 67
Offset: 1

Views

Author

Guenther Schrack, Mar 24 2017

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1, 2, 3, 4); swap the third and fourth element, then swap the second and third element; repeat for all quadruples.

Crossrefs

Inverse: A056699.
Subsequences:
elements with odd index: A042963(n), n > 0
elements with even index: A014601(A103889(n)), n > 0
odd elements: A005408(n-1), n > 0
indices of odd elements: A042948(n), n > 0
even elements: 2*A103889(n), n > 0
indices of even elements: A042964(n), n > 0
Sequence of fixed points: A016813(n-1), n > 0
Every fourth element starting at:
n=1: a(4n-3) = 4n-3 = A016813(n-1), n > 0
n=2: a(4n-2) = 4n = A008586(n), n > 0
n=3: a(4n-1) = 4n-2 = A016825(n-1), n > 0
n=4: a(4n) = 4n-1 = A004767(n-1), n > 0
Difference between pairs of elements:
a(2n+1)-a(2n-1) = A010684(n-1), n > 0
Compositions:
a(n) = A133256(A116966(n-1)), n > 0
a(A042948(n)) = A005408(n-1), n > 0
A067060(a(n)) = A092486(n), n > 0

Programs

  • MATLAB
    a = [1 4 2 3];
    max = (specify);
    for n = 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • Mathematica
    Table[n + ((-1)^n - (-1)^(n (n - 1)/2) (1 + 2 (-1)^n))/2, {n, 68}] (* Michael De Vlieger, Mar 28 2017 *)
    LinearRecurrence[{1,0,0,1,-1},{1,4,2,3,5},70] (* or *) {#[[1]],#[[4]], #[[2]],#[[3]]}&/@Partition[Range[70],4]//Flatten(* Harvey P. Dale, Sep 27 2017 *)
  • PARI
    for(n=1, 68, print1(n + ((-1)^n - (-1)^(n*(n - 1)/2)*(1 + 2*(-1)^n))/2,", ")) \\ Indranil Ghosh, Mar 29 2017

Formula

a(1)=1, a(2)=4, a(3)=2, a(4)=3, a(n) = a(n-4) + 4, n > 4.
O.g.f.: (x^4 + x^3 - 2*x^2 + 3x - 1)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^n - (-1)^(n*(n-1)/2)*(1 + 2*(-1)^n))/2.
a(n) = n + (-1)^n*(1 - (-1)^(n*(n-1)/2) - (i^n - (-i)^n))/2.
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5), n > 5.
First differences, periodic: (3, -2, 1, 2), repeat.
a(n) = (2*n - 3*cos(n*Pi/2) + cos(n*Pi) + sin(n*Pi/2))/2. - Wesley Ivan Hurt, Apr 01 2017

A301505 Expansion of Product_{k>=1} (1 + x^(4*k))*(1 + x^(4*k-1)).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 3, 2, 0, 2, 5, 2, 0, 4, 7, 3, 1, 7, 10, 4, 2, 11, 14, 5, 4, 17, 19, 6, 8, 25, 25, 9, 13, 36, 33, 12, 21, 50, 43, 16, 33, 69, 55, 23, 49, 93, 70, 32, 71, 124, 89, 45, 102, 163, 112, 64, 142, 212, 141, 89, 195, 273, 177, 123, 265, 349
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 0 or 3 mod 4.

Examples

			a(11) = 3 because we have [11], [8, 3] and [7, 4].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k)) (1 + x^(4 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[x QPochhammer[-1, x^4] QPochhammer[-x^(-1), x^4]/(2 (1 + x)), {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 3}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A014601(k)).
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(5/2)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 23 2018

A305474 Coefficients of Hilbert class polynomial H_D(x) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .

Original entry on oeis.org

0, 1, -1728, 1, 3375, 1, -8000, 1, 32768, 1, -54000, 1, -121287375, 191025, 1, -287496, 1, 884736, 1, -681472000, -1264000, 1, 12771880859375, -5151296875, 3491750, 1, 14670139392, -4834944, 1, 12288000, 1, -16581375, 1, 1566028350940383, -58682638134
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2018

Keywords

Examples

			D   |                0             1         2  3
----+---------------------------------------------
-3  |                0,            1;
-4  |            -1728,            1;
-7  |             3375,            1;
-8  |            -8000,            1;
-11 |            32768,            1;
-12 |           -54000,            1;
-15 |       -121287375,       191025,        1;
-16 |          -287496,            1;
-19 |           884736,            1;
-20 |       -681472000,     -1264000,        1;
-23 |   12771880859375,  -5151296875,  3491750, 1;
-24 |      14670139392,     -4834944,        1;
-27 |         12288000,            1;
-28 |        -16581375,            1;
-31 | 1566028350940383, -58682638134, 39491307, 1;
-32 |      12167000000,    -52250000,        1;
-35 |    -134217728000,    117964800,        1;
-36 |   -1790957481984,   -153542016,        1;
		

Crossrefs

Cf. A014600, A014601, A032354, A305475 (constant).

Programs

  • PARI
    d(n) = 2*n+n%2;
    T(n, k) = polcoef(polclass(-d(n)), k);
    tabf(nn) = for(n=1, nn, for(k=0, poldegree(polclass(-d(n))), print1(T(n, k), ", ")); print)

A078636 a(n) = rad(n*(n+1)).

Original entry on oeis.org

2, 6, 6, 10, 30, 42, 14, 6, 30, 110, 66, 78, 182, 210, 30, 34, 102, 114, 190, 210, 462, 506, 138, 30, 130, 78, 42, 406, 870, 930, 62, 66, 1122, 1190, 210, 222, 1406, 1482, 390, 410, 1722, 1806, 946, 330, 690, 2162, 282, 42, 70, 510, 1326, 1378, 318, 330, 770, 798
Offset: 1

Views

Author

Jon Perry, Dec 12 2002

Keywords

Examples

			a(3) = 6 as rad(3*4) = rad(12) = rad(2*2*3) = 2*3 = 6.
		

Crossrefs

Programs

  • Maple
    A078636 := proc(n)
        A007947(n)*A007947(n+1) ;
    end proc:
    seq( A078636(n),n=1..10) ; # R. J. Mathar, Mar 15 2023
  • Mathematica
    rad[n_] := Times @@ FactorInteger[n][[All, 1]];
    a[n_] := rad[n(n+1)];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 27 2024 *)
  • PARI
    rad(n)=local(p,i); p=factor(n)[,1]; prod(i=1,length(p),p[i])
    for (k=1,100,print1(rad(k*(k+1))", "))

Formula

From Reinhard Zumkeller, Aug 05 2003: (Start)
a(n) = rad(n*(n+1)) = rad(n)*rad(n+1).
mu(a(n)) = mu(rad(n*(n+1))) = mu(rad(n))*mu(rad(n+1)), where rad=A007947 and mu=A008683. (End)
From Reinhard Zumkeller, Apr 10 2008: (Start)
a(A014601(n)) = A139131(A014601(n)).
a(n) = A139131(n) * A014695(n). (End)
From Amiram Eldar, Apr 04 2025: (Start)
a(n) = A007947(A002378(n)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = Product_{p prime} (1 - 2/(p*(p+1))) = 0.4716806... (A307868). (End)

A129600 Array A(i,j) of binary run-length encoded product of i and j, read by ascending antidiagonals.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 4, 4, 3, 4, 7, 6, 7, 4, 5, 8, 8, 8, 8, 5, 6, 11, 12, 15, 12, 11, 6, 7, 12, 9, 16, 16, 9, 12, 7, 8, 15, 14, 23, 24, 23, 14, 15, 8, 9, 16, 16, 24, 19, 19, 24, 16, 16, 9, 10, 19, 24, 31, 28, 13, 28, 31, 24, 19, 10, 11, 20, 17, 32, 32, 17, 17, 32, 32, 17, 20, 11, 12
Offset: 0

Views

Author

Antti Karttunen, May 01 2007

Keywords

Crossrefs

Cf. A129602 (center diagonal), A014601 (row 1 apart from the first term).

Formula

A(i,j) = A075158(((A075157(i)+1)*(A075157(j)+1)) - 1).

Extensions

Name edited by Michel Marcus, Dec 01 2021

A279169 a(n) = floor( 4*n^2/5 ).

Original entry on oeis.org

0, 0, 3, 7, 12, 20, 28, 39, 51, 64, 80, 96, 115, 135, 156, 180, 204, 231, 259, 288, 320, 352, 387, 423, 460, 500, 540, 583, 627, 672, 720, 768, 819, 871, 924, 980, 1036, 1095, 1155, 1216, 1280, 1344, 1411, 1479, 1548, 1620, 1692, 1767, 1843, 1920, 2000, 2080, 2163, 2247
Offset: 0

Views

Author

Bruno Berselli, Dec 07 2016

Keywords

Crossrefs

Cf. A090223: floor(4*n/5).
Subsequence of A008728, A014601, A118015, A131242.
Cf. similar sequences with closed form floor(k*n^2/5): A118015 (k=1), A033437 (k=2), A184535 (k=3).

Programs

  • Magma
    [4*n^2 div 5: n in [0..60]];
  • Mathematica
    Table[Floor[4 n^2/5], {n, 0, 60}]
    LinearRecurrence[{2,-1,0,0,1,-2,1},{0,0,3,7,12,20,28},60] (* Harvey P. Dale, Nov 07 2020 *)
  • PARI
    vector(60, n, n--; floor(4*n^2/5))
    
  • Python
    [int(4*n**2/5) for n in range(60)]
    
  • Sage
    [floor(4*n^2/5) for n in range(60)]
    

Formula

O.g.f.: x^2*(3 + x + x^2 + 3*x^3)/((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7).
a(5*m+r) = 4*m*(5*m + 2*r) + a(r), where m >= 0 and 0 <= r < 5. Example: for m=4 and r=3, a(5*4+3) = a(23) = 4*4*(5*4 + 2*3) + a(3) = 416 + 7 = 423.
a(n) = A118015(2*n) = A008728(4*n+2) = A131242(4*n+4) = A014601(floor(2*n^2/5)).
Sum_{n>=2} 1/a(n) = Pi^2/120 + sqrt(29 - 62/sqrt(5))*Pi/8 + 5/16. - Amiram Eldar, Sep 26 2022

A292576 Permutation of the natural numbers partitioned into quadruples [4k-1, 4k-3, 4k-2, 4k], k > 0.

Original entry on oeis.org

3, 1, 2, 4, 7, 5, 6, 8, 11, 9, 10, 12, 15, 13, 14, 16, 19, 17, 18, 20, 23, 21, 22, 24, 27, 25, 26, 28, 31, 29, 30, 32, 35, 33, 34, 36, 39, 37, 38, 40, 43, 41, 42, 44, 47, 45, 46, 48, 51, 49, 50, 52, 55, 53, 54, 56, 59, 57, 58, 60, 63, 61, 62
Offset: 1

Views

Author

Guenther Schrack, Sep 19 2017

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the second and third elements, then swap the first and the second element; repeat for all quadruples.

Crossrefs

Inverse: A056699(n+1) - 1 for n > 0.
Sequence of fixed points: A008586(n) for n > 0.
Subsequences:
elements with odd index: A042964(A103889(n)) for n > 0.
elements with even index: A042948(n) for n > 0.
odd elements: A166519(n) for n>0.
indices of odd elements: A042963(n) for n > 0.
even elements: A005843(n) for n>0.
indices of even elements: A014601(n) for n > 0.
Sum of pairs of elements:
a(n+2) + a(n) = A163980(n+1) = A168277(n+2) for n > 0.
Difference between pairs of elements:
a(n+2) - a(n) = (-1)^A011765(n+3)*A091084(n+1) for n > 0.
Compound relations:
a(n) = A284307(n+1) - 1 for n > 0.
a(n+2) - 2*a(n+1) + a(n) = (-1)^A011765(n)*A132400(n+1) for n > 0.
Compositions:
a(n) = A116966(A080412(n)) for n > 0.
a(A284307(n)) = A256008(n) for n > 0.
a(A042963(n)) = A166519(n-1) for n > 0.
A256008(a(n)) = A056699(n) for n > 0.

Programs

  • MATLAB
    a = [3 1 2 4]; % Generate b-file
    max = 10000;
    for n := 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • PARI
    for(n=1, 10000, print1(n + ((-1)^(n*(n-1)/2)*(2 - (-1)^n) - (-1)^n)/2, ", "))

Formula

a(1)=3, a(2)=1, a(3)=2, a(4)=4, a(n) = a(n-4) + 4 for n > 4.
O.g.f.: (2*x^3 + x^2 - 2*x + 3)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^(n*(n-1)/2)*(2-(-1)^n) - (-1)^n)/2.
a(n) = n + (cos(n*Pi/2) - cos(n*Pi) + 3*sin(n*Pi/2))/2.
a(n) = n + n mod 2 + (ceiling(n/2)) mod 2 - 2*(floor(n/2) mod 2).
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
First Differences, periodic: (-2, 1, 2, 3), repeat; also (-1)^A130569(n)*A068073(n+2) for n > 0.

A305475 Constant of Hilbert class polynomial H_D(x) as D runs through the numbers -3, -4, -7, -8, -11, -12, ... .

Original entry on oeis.org

0, -1728, 3375, -8000, 32768, -54000, -121287375, -287496, 884736, -681472000, 12771880859375, 14670139392, 12288000, -16581375, 1566028350940383, 12167000000, -134217728000, -1790957481984, 20919104368024767633, 9103145472000, 884736000
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2018

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff(polclass(-2*n-n%2), 0)}
Previous Showing 31-40 of 64 results. Next