cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A104698 Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(k, j)*binomial(n-j+1, k+1).

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 9, 6, 1, 5, 16, 19, 8, 1, 6, 25, 44, 33, 10, 1, 7, 36, 85, 96, 51, 12, 1, 8, 49, 146, 225, 180, 73, 14, 1, 9, 64, 231, 456, 501, 304, 99, 16, 1, 10, 81, 344, 833, 1182, 985, 476, 129, 18, 1, 11, 100, 489, 1408, 2471, 2668, 1765, 704, 163, 20, 1, 12
Offset: 0

Views

Author

Gary W. Adamson, Mar 19 2005

Keywords

Comments

The n-th column of the triangle is the binomial transform of the n-th row of A081277, followed by zeros. Example: column 3, (1, 6, 19, 44, ...) = binomial transform of row 3 of A081277: (1, 5, 8, 4, 0, 0, 0, ...). A104698 = reversal by rows of A142978. - Gary W. Adamson, Jul 17 2008
This sequence is jointly generated with A210222 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) + 1 and v(n,x) = 2x*u(n-1,x) + v(n-1,x) + 1. See the Mathematica section at A210222. - Clark Kimberling, Mar 19 2012
This Riordan triangle T appears in a formula for A001100(n, 0) = A002464(n), for n >= 1. - Wolfdieter Lang, May 13 2025

Examples

			The Riordan triangle T begins:
  n\k  0   1   2    3    4    5    6   7   8  9 10 ...
  ----------------------------------------------------
  0:   1
  1:   2   1
  2:   3   4   1
  3:   4   9   6    1
  4:   5  16  19    8    1
  5:   6  25  44   33   10    1
  6:   7  36  85   96   51   12    1
  7:   8  49 146  225  180   73   14   1
  8:   9  64 231  456  501  304   99  16   1
  9:  10  81 344  833 1182  985  476 129  18  1
  10: 11 100 489 1408 2471 2668 1765 704 163 20  1
  ... reformatted and extended by _Wolfdieter Lang_, May 13 2025
From _Wolfdieter Lang_, May 13 2025: (Start)
Zumkeller recurrence (adapted for offset [0,0]): 19 = T(4, 2) = T(2, 1) + T(3, 1) + T(3,3) = 4 + 9 + 6 = 19.
A-sequence recurrence: 19 = T(4, 2) = 1*T(3. 1) + 2*T(3. 2) - 2*T(3, 3) = 9 + 12 - 2 = 19.
Z-sequence recurrence: 5 = T(4, 0) = 2*T(3, 0) - 1*T(3, 1) + 2*T(3, 2) - 6*T(3, 3) = 8 - 9 + 12 + 6 = 5.
Boas-Buck recurrence: 19 = T(4, 2) = (1/2)*((2 + 0)*T(2, 2) + (2 + 2*2)*T(3, 2)) = (1/2)*(2 + 36) = 19. (End)
		

Crossrefs

Diagonal sums are A008937(n+1).
Cf. A048739 (row sums), A008288, A005900 (column 3), A014820 (column 4)
Cf. A081277, A142978 by antidiagonals, A119328, A110271 (matrix inverse).

Programs

  • Haskell
    a104698 n k = a104698_tabl !! (n-1) !! (k-1)
    a104698_row n = a104698_tabl !! (n-1)
    a104698_tabl = [1] : [2,1] : f [1] [2,1] where
       f us vs = ws : f vs ws where
         ws = zipWith (+) ([0] ++ us ++ [0]) $
              zipWith (+) ([1] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    A104698 := proc(n, k) add(binomial(k, j)*binomial(n-j+1, n-k-j), j=0..n-k) ; end proc:
    seq(seq(A104698(n, k), k=0..n), n=0..15); # R. J. Mathar, Sep 04 2011
    T := (n, k) -> binomial(n + 1, k + 1)*hypergeom([-k, k - n], [-n - 1], -1):
    for n from 0 to 9 do seq(simplify(T(n, k)), k = 0..n) od;
    T := proc(n, k) option remember; if k = 0 then n + 1 elif k = n then 1 else T(n-2, k-1) + T(n-1, k-1) + T(n-1, k) fi end: # Peter Luschny, May 13 2025
  • Mathematica
    u[1, ] = 1; v[1, ] = 1;
    u[n_, x_] := u[n, x] = x u[n-1, x] + v[n-1, x] + 1;
    v[n_, x_] := v[n, x] = 2 x u[n-1, x] + v[n-1, x] + 1;
    Table[CoefficientList[u[n, x], x], {n, 1, 11}] // Flatten (* Jean-François Alcover, Mar 10 2019, after Clark Kimberling *)
  • PARI
    T(n,k)=sum(j=0,n-k,binomial(k,j)*binomial(n-j+1,k+1)) \\ Charles R Greathouse IV, Jan 16 2012
    

Formula

The triangle is extracted from the product A * B; A = [1; 1, 1; 1, 1, 1; ...], B = [1; 1, 1; 1, 3, 1; 1, 5, 5, 1; ...] both infinite lower triangular matrices (rest of the terms are zeros). The triangle of matrix B by rows = A008288, Delannoy numbers.
From Paul Barry, Jul 18 2005: (Start)
Riordan array (1/(1-x)^2, x(1+x)/(1-x)) = (1/(1-x), x)*(1/(1-x), x(1+x)/(1-x)).
T(n, k) = Sum_{j=0..n} Sum_{i=0..j-k} C(j-k, i)*C(k, i)*2^i.
T(n, k) = Sum_{j=0..k} Sum_{i=0..n-k-j} (n-k-j-i+1)*C(k, j)*C(k+i-1, i). (End)
T(n, k) = binomial(n+1, k+1)*2F1([-k, k-n], [-n-1], -1) where 2F1 is a Gaussian hypergeometric function. - R. J. Mathar, Sep 04 2011
T(n, k) = T(n-2, k-1) + T(n-1, k-1) + T(n-1, k) for 1 < k < n; T(n, 0) = n + 1; T(n, n) = 1. - Reinhard Zumkeller, Jul 17 2015
From Wolfdieter Lang, May 13 2025: (Start)
The Riordan triangle T = (1/(1 - x)^2, x*(1 + x)/(1 - x)) has the o.g.f. G(x, y) = 1/((1 - x)*(1 - x - y*x*(1+x))) for the row polynomials R(n, y) = Sum_{k=0..n} T(n, k)*y^k.
The o.g.f. for column k is G(k, x) = (1/(1 - x)^2)*(x*(1 + x)/(1 - x))^k, for k >= 0.
The o.g.f. for the diagonal m is D(m, x) = N(m, x)/(1 - x)^(m+1), with the numerator polynomial N(m, x) = Sum_{k=0..floor(m/2)} A034867(m, k)*x^(2*k) for m >= 0.
The row sums with o.g.f. R(x) = 1/((1 -x)*(1 - 2*x -x^2) give A048739.
The alternating row sums with o.g.f. 1/((1 - x)(1 + x^2)) give A133872.
The A-sequence for this Riordan triangle has o.g.f. A(x) = 1 + x + sqrt(1 + 6*x + x^2))/2 giving A112478(n). Hence T(n, k) = Sum_{j=0..n-k} A112478(j)*T(n-1, k-1+j), for n >= 1, k >= 1, T(n, k) = 0 for n < k, and T(0, 0) = 1.
The Z-sequence has o.g.f. (5 + x - sqrt(1 + 6*x + x^2))/2 = 3 + x - A(x) giving Z(n) = {2, -1, -A112478(n >= 2)}. Hence T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), for n >= 1. For A- and Z-sequences of Riordan triangles see a W. Lang link at A006232 with references.
The Boas-Buck sequences alpha and beta for the Riordan triangle T (see A046521 for the Aug 10 2017 comment and reference) are alpha(n) = A040000(n+1) = repeat{2} and beta(n) = A010673(n+1) = repeat{2,0}. Hence the recurrence for column T(n, k){n>=k}, with input T(k, k) = 1, for k >= 0, is T(n, k) = (1/(n-k)) * Sum{j=k..n-1} (2 + k*(1 + (-1)^(n-1-j))) *T(j,k), for n >= k+1. (End)

A061927 a(n) = n*(n+1)*(2*n+1)*(n^2+n+3)/30.

Original entry on oeis.org

0, 1, 9, 42, 138, 363, 819, 1652, 3060, 5301, 8701, 13662, 20670, 30303, 43239, 60264, 82280, 110313, 145521, 189202, 242802, 307923, 386331, 479964, 590940, 721565, 874341, 1051974, 1257382, 1493703, 1764303, 2072784, 2422992, 2819025
Offset: 0

Views

Author

Henry Bottomley, May 17 2001

Keywords

Comments

Also number of magic labelings of the cubical graph of magic sum n-1 [Ahmed]. - R. J. Mathar, Jan 25 2007
If Y_i (i=1,2,3) are 2-blocks of a (n+3)-set X then a(n-4) is the number of 8-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Oct 28 2007
The cube graph is also the prism graph I X C_4, so this is related to the number of magic labelings of other prism & related graphs. - David J. Seal, Sep 13 2017

Crossrefs

Cf. A006325, A019298, A244497, A244873, A289992, A292281, partial sums of A014820, A006975 (binomial transform shifted left).

Programs

  • Mathematica
    Table[n (n + 1) (2 n + 1) (n^2 + n + 3)/30, {n, 0, 33}] (* or *)
    CoefficientList[Series[x (1 + x)^3/(-1 + x)^6, {x, 0, 33}], x] (* Michael De Vlieger, Sep 15 2017 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,9,42,138,363},40] (* Harvey P. Dale, Apr 18 2018 *)
  • PARI
    a(n) = { n*(n + 1)*(2*n + 1)*(n^2 + n + 3)/30 } \\ Harry J. Smith, Jul 29 2009

Formula

a(n) = a(n-1) + A014820(n) = A061926(9, n).
G.f.: x*(1+x)^3/(-1+x)^6 = 20/(-1+x)^5 + 1/(-1+x)^2 + 7/(-1+x)^3 + 18/(-1+x)^4 + 8/(-1+x)^6. - R. J. Mathar, Nov 18 2007

A099197 a(n) = (n^2)*(2*n^8+120*n^6+1806*n^4+7180*n^2+5067)/14175.

Original entry on oeis.org

0, 1, 20, 201, 1360, 7001, 29364, 104881, 329024, 927441, 2390004, 5707449, 12767184, 26986089, 54284244, 104535009, 193664256, 346615329, 601446996, 1014889769, 1669752016, 2684641785, 4226553716, 6526963345, 9902174016, 14778775025, 21725194036, 31490462745
Offset: 0

Views

Author

Jonathan Vos Post, Nov 16 2004

Keywords

Crossrefs

Similar sequences: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A069039 (m=6), A099193 (m=7), A099195 (m=8), A099196 (m=9).
Cf. A000332.

Programs

Formula

a(n) = (n^2)*(2*n^8+120*n^6+1806*n^4+7180*n^2+5067)/14175.

A167875 One third of product plus sum of three consecutive nonnegative integers; a(n)=(n+1)(n^2+2n+3)/3.

Original entry on oeis.org

1, 4, 11, 24, 45, 76, 119, 176, 249, 340, 451, 584, 741, 924, 1135, 1376, 1649, 1956, 2299, 2680, 3101, 3564, 4071, 4624, 5225, 5876, 6579, 7336, 8149, 9020, 9951, 10944, 12001, 13124, 14315, 15576, 16909, 18316, 19799, 21360, 23001, 24724, 26531
Offset: 0

Views

Author

Klaus Brockhaus, Nov 14 2009

Keywords

Comments

a(n) = ((n*(n+1)*(n+2))+(n+(n+1)+(n+2)))/3, n >= 0.
Equals A006527 without initial term 0: a(n) = A006527(n+1).
Binomial transform of A167876.
Inverse binomial transform of A080930.
a(n) = A007290(n+2)+n+1.
a(n) = A014820(n)/(n+1) for n > 0.
a(n) = A116731(n+2)-1.
a(n) = A033547(n+1)-n.
a(n) = A054602(n)/3.
a(n) = A086514(n+3)-2.
a(n) = A002061(n+1)+a(n-1) for n > 0.
a(n) = A005894(n)-a(n-1) for n > 0.
First bisection is A057813.
Second differences are in A004277.
a(n) = A177342(n)*(-1)+a(n-1)*5 with n>0. For n=8, a(8)=-A177342(8)+a(7)*5=-631+176*5=249. - Bruno Berselli, May 18 2010

Examples

			a(0) = (0*1*2+0+1+2)/3 = (0+3)/3 = 1.
a(1) = (1*2*3+1+2+3)/3 = (6+6)/3 = 4.
a(6)-4*a(5)+6*a(4)-4*a(3)+a(2) = 119-4*76+6*45-4*24+11 = 0. - _Bruno Berselli_, May 26 2010
		

Crossrefs

Cf. A001477 (nonnegative integers),
A006527 ((n^3+2*n)/3),
A167876 (1, 3, 4, 2, 0, 0, 0, 0, ...),
A007290 (2*C(n, 3)),
A014820 ((1/3)*(n^2+2*n+3)*(n+1)^2),
A033547 (n*(n^2+5)/3),
A054602 (Sum_{d|3} phi(d)*n^(3/d)),
A086514 ((n^3-6*n^2+14*n-6)/3),
A002061 (n^2-n+1),
A005894 (centered tetrahedral numbers),
A057813 ((2*n+1)*(4*n^2+4*n+3)/3),
A004277 (1 and the positive even numbers),
A028387 (n+(n+1)^2),

Programs

  • Magma
    [ (&*s + &+s)/3 where s is [n..n+2]: n in [0..42] ];
    
  • Mathematica
    Select[Table[(n*(n+1)*(n+2)+n+(n+1)+(n+2))/3,{n,0,5!}],IntegerQ[#]&] (* Vladimir Joseph Stephan Orlovsky, Dec 04 2010 *)
    (Times@@#+Total[#])/3&/@Partition[Range[0,65],3,1]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    a(n)=(n+1)*(n^2+2*n+3)/3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (n^3+3*n^2+5*n+3)/3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3)+2 for n > 3; a(0)=1, a(1)=4, a(2)=11, a(3)=24.
G.f.: (1+x^2)/(1-x)^4.
a(n) = SUM(A109613(k)*A005408(n-k): 0<=k<=n). - Reinhard Zumkeller, Dec 05 2009
a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4)=0 for n>3. - Bruno Berselli, May 26 2010

A092181 Figurate numbers based on the 24-cell (4-D polytope with Schlaefli symbol {3,4,3}).

Original entry on oeis.org

1, 24, 153, 544, 1425, 3096, 5929, 10368, 16929, 26200, 38841, 55584, 77233, 104664, 138825, 180736, 231489, 292248, 364249, 448800, 547281, 661144, 791913, 941184, 1110625, 1301976, 1517049, 1757728, 2025969, 2323800, 2653321, 3016704
Offset: 1

Views

Author

Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004

Keywords

Comments

This is the 4-dimensional regular convex polytope called the 24-cell, hyperdiamond or icositetrachoron.

Examples

			a(3)= 3^2*((3*3^2)-(4*3)+2) = 9*(27-12+2) = 9*17 = 153
		

Crossrefs

Programs

  • Magma
    [n^2*((3*n^2)-(4*n)+2): n in [1..40]]; // Vincenzo Librandi, May 22 2011
    
  • Mathematica
    Table[SeriesCoefficient[x (1 + 19 x + 43 x^2 + 9 x^3)/(1 - x)^5, {x, 0, n}], {n, 32}] (* Michael De Vlieger, Dec 14 2015 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,24,153,544,1425},40] (* Harvey P. Dale, May 25 2022 *)
  • PARI
    a(n) = n^2*(3*n^2-4*n+2); \\ Michel Marcus, Dec 14 2015

Formula

a(n) = n^2*((3*n^2)-(4*n)+2).
a(n) = C(n+3,4) + 19 C(n+2,4) + 43 C(n+1,4) + 9 C(n,4).
a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). G.f.: x*(1+19*x+43*x^2+9*x^3)/(1-x)^5. [R. J. Mathar, Jun 21 2010]
a(n) = Sum_{k = 1..n} (k^3 + k^7)* binomial(n,k)/binomial(n+k,k). Cf. A034262 and A155977. - Peter Bala, Feb 12 2019

A092182 Figurate numbers based on the 600-cell (4-D polytope with Schlaefli symbol {3,3,5}).

Original entry on oeis.org

1, 120, 947, 3652, 9985, 22276, 43435, 76952, 126897, 197920, 295251, 424700, 592657, 806092, 1072555, 1400176, 1797665, 2274312, 2839987, 3505140, 4280801, 5178580, 6210667, 7389832, 8729425, 10243376, 11946195, 13852972, 15979377
Offset: 1

Views

Author

Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004

Keywords

Comments

This is the 4-dimensional regular convex polytope called the 600-cell, hexacosichoron or hypericosahedron.

Examples

			a(3)= 3*((145*3^3)-(280*3^2)+(179*3)-38)/6 = 3*(3915-2520+537-38)/6 = 0.5*1894 = 947
		

Crossrefs

Programs

  • Magma
    [n*((145*n^3)-(280*n^2)+(179*n)-38)/6: n in [1..40]]; // Vincenzo Librandi, May 22 2011
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,120,947,3652,9985},30] (* Harvey P. Dale, May 04 2024 *)

Formula

a(n) = n*((145*n^3)-(280*n^2)+(179*n)-38)/6
a(n) = C(n+3,4) + 115 C(n+2,4) + 357 C(n+1,4) + 107 C(n,4)
a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). G.f.: x*(1+115*x+357*x^2+107*x^3)/(1-x)^5. [R. J. Mathar, Jun 21 2010]

A092183 Figurate numbers based on the 120-cell (4-D polytope with Schlaefli symbol {5,3,3}).

Original entry on oeis.org

1, 600, 4983, 19468, 53505, 119676, 233695, 414408, 683793, 1066960, 1592151, 2290740, 3197233, 4349268, 5787615, 7556176, 9701985, 12275208, 15329143, 18920220, 23108001, 27955180, 33527583, 39894168, 47127025, 55301376
Offset: 1

Views

Author

Michael J. Welch (mjw1(AT)ntlworld.com), Mar 31 2004

Keywords

Comments

This is the 4-dimensional regular convex polytope called the 120-cell, hecatonicosachoron or hyperdodecahedron.

Examples

			a(3) = 3*((261*3^3)-(504*3^2)+(283*3)-38)/2 = 3*(7047-4536+849-38)/2 = 1.5*3322 = 4983
		

Crossrefs

Programs

  • Magma
    [n*((261*n^3)-(504*n^2)+(283*n)-38)/2: n in [1..40]]; // Vincenzo Librandi, May 22 2011
    
  • Mathematica
    Table[SeriesCoefficient[x (1 + 595 x + 1993 x^2 + 543 x^3)/(1 - x)^5, {x, 0, n}], {n, 26}] (* Michael De Vlieger, Dec 14 2015 *)
  • PARI
    a(n) = n*(261*n^3 - 504*n^2 + 283*n - 38)/2; \\ Michel Marcus, Dec 14 2015

Formula

a(n) = n*((261*n^3)-(504*n^2)+(283*n)-38)/2.
a(n) = C(n+3,4) + 595 C(n+2,4) + 1993 C(n+1,4) + 543 C(n,4).
a(n) = +5*a(n-1) -10*a(n-2) +10*a(n-3) -5*a(n-4) +a(n-5). G.f.: x*(1+595*x+1993*x^2+543*x^3)/(1-x)^5. [R. J. Mathar, Jun 21 2010]

A035598 Number of points of L1 norm 4 in cubic lattice Z^n.

Original entry on oeis.org

0, 2, 16, 66, 192, 450, 912, 1666, 2816, 4482, 6800, 9922, 14016, 19266, 25872, 34050, 44032, 56066, 70416, 87362, 107200, 130242, 156816, 187266, 221952, 261250, 305552, 355266, 410816, 472642, 541200, 616962, 700416, 792066
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [( 2*n^4 +4*n^2 )/3: n in [0..40]]; // Vincenzo Librandi, Apr 22 2012
  • Maple
    f := proc(d,m) local i; sum( 2^i*binomial(d,i)*binomial(m-1,i-1),i=1..min(d,m)); end; # n=dimension, m=norm
  • Mathematica
    CoefficientList[Series[2*x*(1+x)^3/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, Apr 22 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,2,16,66,192},50] (* Harvey P. Dale, Dec 11 2019 *)
  • PARI
    a(n)=2*n^2*(n^2+2)/3 \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

a(n) = 2*n^2*(n^2 + 2)/3. - Frank Ellermann, Mar 16 2002
G.f.: 2*x*(1+x)^3/(1-x)^5. - Colin Barker, Apr 15 2012
a(n) = 2*A014820(n-1). - R. J. Mathar, Dec 10 2013
a(n) = a(n-1) + A035597(n) + A035597(n-1). - Bruce J. Nicholson, Mar 11 2018
From Shel Kaphan, Feb 28 2023: (Start)
a(n) = 2*n*Hypergeometric2F1(1-n,1-k,2,2), where k=4.
a(n) = A001846(n) - A001845(n).
a(n) = A008412(n)*n/4. (End)
From Amiram Eldar, Mar 12 2023: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/8 - 3*Pi*coth(sqrt(2)*Pi)/(8*sqrt(2)) + 3/16.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/16 + 3*Pi*cosech(sqrt(2)*Pi)/(8*sqrt(2)) - 3/16. (End)
E.g.f.: 2*exp(x)*x*(3 + 9*x + 6*x^2 + x^3)/3. - Stefano Spezia, Mar 14 2024

A142986 a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1) + (n + 1)*(n + 2)*a(n).

Original entry on oeis.org

1, 8, 70, 656, 6648, 72864, 862128, 10977408, 149892480, 2187106560, 33985025280, 560578268160, 9786290088960, 180315565516800, 3497645442816000, 71256899266560000, 1521414754578432000, 33975929212194816000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 4 of the general recurrence a(1) = 1, a(2) = 2*m, a(n+2) = 2*m*a(n+1) + (n + 1)*(n + 2)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). See A142983 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Haskell
    a142986 n = a142986_list !! (n-1)
    a142986_list = 1 : 8 : zipWith (+)
                           (map (* 8) $ tail a142986_list)
                           (zipWith (*) (drop 2 a002378_list) a142986_list)
    -- Reinhard Zumkeller, Jul 17 2015
  • Maple
    p := n -> (n^4+2*n^2)/3: a := n -> n!*p(n+1)*sum ((-1)^(k+1)/(p(k)*p(k+1)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    RecurrenceTable[{a[1]==1,a[2]==8,a[n]==8a[n-1]+n(n-1)a[n-2]},a,{n,20}] (* Harvey P. Dale, Apr 08 2015 *)

Formula

a(n) = n!*p(n+1)*Sum_{k = 1..n} (-1)^(k+1)/(p(k)*p(k+1)), where p(n) = (n^4 + 2*n^2)/3 = A014820(n).
Recurrence: a(1) = 1, a(2) = 8, a(n+2) = 8*a(n+1) + (n + 1)*(n + 2)*a(n).
The sequence b(n) := n!*p(n+1) satisfies the same recurrence with b(1) = 8 and b(2) = 66.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(8 + 1*2/(8 + 2*3/(8 + 3*4/(8 + ... + n*(n - 1)/8)))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(p(k)*p(k+1)) = 1/(8 + 1*2/(8 + 2*3/(8 + 3*4/(8 + ... + n*(n - 1)/(8 + ...))))) = 17/3 - 8*log(2), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 32(i)]).

A329635 Numbers that are sums of consecutive centered octahedral numbers (A001845).

Original entry on oeis.org

1, 7, 8, 25, 32, 33, 63, 88, 95, 96, 129, 192, 217, 224, 225, 231, 360, 377, 423, 448, 455, 456, 575, 608, 737, 800, 825, 832, 833, 952, 1159, 1183, 1312, 1375, 1400, 1407, 1408, 1561, 1785, 1992, 2016, 2047, 2145, 2208, 2233, 2240, 2241, 2567, 2625, 2720, 2944
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 18 2019

Keywords

Crossrefs

Previous Showing 11-20 of 29 results. Next