A180250
a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
Offset: 1
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Join[{a=0,b=1},Table[c=5*b+10*a;a=b;b=c,{n,100}]]
LinearRecurrence[{5,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
a(n)=([0,1;10,5]^(n-1))[1,2] \\ Charles R Greathouse IV, Oct 03 2016
-
my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
-
A180250= BinaryRecurrenceSequence(5,10,0,1)
[A180250(n-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2023
A182512
a(n) = (16^n - 1)/5.
Original entry on oeis.org
0, 3, 51, 819, 13107, 209715, 3355443, 53687091, 858993459, 13743895347, 219902325555, 3518437208883, 56294995342131, 900719925474099, 14411518807585587, 230584300921369395, 3689348814741910323, 59029581035870565171, 944473296573929042739
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..830
- E. Estrada and J. A. de la Pena, From Integer Sequences to Block Designs via Counting Walks in Graphs, arXiv preprint arXiv:1302.1176 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 28 2013
- E. Estrada and J. A. de la Pena, Integer sequences from walks in graphs, Notes on Number Theory and Discrete Mathematics, Vol. 19, 2013, No. 3, 78-84
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- Index entries for linear recurrences with constant coefficients, signature (17,-16).
-
[(1/5)*2^(4*i) -(1/5): i in [0..30]];
-
seq((16^n-1)/5, n=0..50); # Robert Israel, Jan 22 2016
-
(16^Range[0,20]-1)/5 (* Harvey P. Dale, Aug 07 2019 *)
LinearRecurrence[{17,-16},{0,3},20] (* Harvey P. Dale, Aug 07 2019 *)
-
a(n) = (16^n - 1)/5; \\ Michel Marcus, Jan 22 2016
A015551
Expansion of x/(1 - 6*x - 5*x^2).
Original entry on oeis.org
0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A057089,
A083858,
A085939,
A090017,
A091914,
A099012,
A135030,
A135032,
A180222,
A180226,
A180250.
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
-
a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A247281
a(n) = 4^n -(-1)^n.
Original entry on oeis.org
0, 5, 15, 65, 255, 1025, 4095, 16385, 65535, 262145, 1048575, 4194305, 16777215, 67108865, 268435455, 1073741825, 4294967295, 17179869185, 68719476735, 274877906945, 1099511627775, 4398046511105, 17592186044415
Offset: 0
-
LinearRecurrence[{3, 4}, {0, 5}, 23] (* Jean-François Alcover, May 22 2016 *)
-
concat(0, Vec(-5*x / ((x+1)*(4*x-1)) + O(x^100))) \\ Colin Barker, Sep 11 2014
-
vector(100,n,4^(n-1)+(-1)^n) \\ Derek Orr, Sep 11 2014
-
def A247281(n): return (1<<(n<<1))+(1 if n&1 else -1) # Chai Wah Wu, Jun 28 2023
A201455
a(n) = 3*a(n-1) + 4*a(n-2) for n>1, a(0)=2, a(1)=3.
Original entry on oeis.org
2, 3, 17, 63, 257, 1023, 4097, 16383, 65537, 262143, 1048577, 4194303, 16777217, 67108863, 268435457, 1073741823, 4294967297, 17179869183, 68719476737, 274877906943, 1099511627777, 4398046511103, 17592186044417, 70368744177663, 281474976710657
Offset: 0
Cf. for the same recurrence with initial values (i,i+1):
A015521 (Lucas sequence U(3,-4); i=0),
A122117 (i=1),
A189738 (i=3).
-
[n le 1 select n+2 else 3*Self(n)+4*Self(n-1): n in [0..25]];
-
RecurrenceTable[{a[n] == 3 a[n - 1] + 4 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}]
-
a[0]:2$ a[1]:3$ a[n]:=3*a[n-1]+4*a[n-2]$ makelist(a[n], n, 0, 25);
-
Vec((2-3*x)/((1+x)*(1-4*x)) + O(x^30)) \\ Michel Marcus, Jun 26 2015
A015592
a(n) = 10*a(n-1) + 11*a(n-2).
Original entry on oeis.org
0, 1, 10, 111, 1220, 13421, 147630, 1623931, 17863240, 196495641, 2161452050, 23775972551, 261535698060, 2876892678661, 31645819465270, 348104014117971, 3829144155297680, 42120585708274481, 463326442791019290, 5096590870701212191, 56062499577713334100
Offset: 0
Cf.
A001045,
A078008,
A097073,
A115341,
A015518,
A054878,
A015521,
A109499,
A015531,
A109500,
A109501,
A015552,
A093134,
A015565,
A015577,
A015585. -
Vladimir Joseph Stephan Orlovsky, Dec 11 2008
-
[-(1/12)*(-1)^n+(1/12)*11^n: n in [0..20]]; // Vincenzo Librandi, Oct 11 2011
-
k=0;lst={k};Do[k=11^n-k;AppendTo[lst, k], {n, 0, 5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 11 2008 *)
-
[lucas_number1(n,10,-11) for n in range(0, 18)] # Zerinvary Lajos, Apr 26 2009
A083857
Square array T(n,k) of binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.
Original entry on oeis.org
0, 0, 1, 0, 1, 3, 0, 1, 3, 7, 0, 1, 3, 8, 15, 0, 1, 3, 9, 21, 31, 0, 1, 3, 10, 27, 55, 63, 0, 1, 3, 11, 33, 81, 144, 127, 0, 1, 3, 12, 39, 109, 243, 377, 255, 0, 1, 3, 13, 45, 139, 360, 729, 987, 511, 0, 1, 3, 14, 51, 171, 495, 1189, 2187, 2584, 1023, 0, 1, 3, 15, 57, 205, 648
Offset: 0
Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
0, 1, 3, 7, 15, 31, 63, 127, 255, ...
0, 1, 3, 8, 21, 55, 144, 377, 987, ...
0, 1, 3, 9, 27, 81, 243, 729, 2187, ...
0, 1, 3, 10, 33, 109, 360, 1189, 3927, ...
0, 1, 3, 11, 39, 139, 495, 1763, 6279, ...
0, 1, 3, 12, 45, 171, 648, 2457, 9315, ...
...
Original entry on oeis.org
1, 3, 2, 13, 9, 3, 51, 52, 18, 4, 205, 255, 130, 30, 5, 819, 1230, 765, 260, 45, 6, 3277, 5733, 4305, 1785, 455, 63, 7, 13107, 26216, 22932, 11480, 3570, 728, 84, 8
Offset: 1
First few rows of the triangle:
1;
3, 2;
13, 9, 3;
51, 52, 18, 4;
205, 255, 130, 30, 5;
...
A189800
a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0
Sequences of the form a(n) = c*a(n-1) + d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
LinearRecurrence[{6, 8}, {0, 1}, 50]
CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
-
a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A015541
Expansion of x/(1 - 5*x - 7*x^2).
Original entry on oeis.org
0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) + 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
Join[{a=0,b=1},Table[c=5*b+7*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{5, 7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-5*x-7*x^2))) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,5,-7) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
Comments