cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 55 results. Next

A180250 a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
    
  • Mathematica
    Join[{a=0,b=1},Table[c=5*b+10*a;a=b;b=c,{n,100}]]
    LinearRecurrence[{5,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
  • PARI
    a(n)=([0,1;10,5]^(n-1))[1,2] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
    
  • SageMath
    A180250= BinaryRecurrenceSequence(5,10,0,1)
    [A180250(n-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = ((5+sqrt(65))^(n-1) - (5-sqrt(65))^(n-1))/(2^(n-1)*sqrt(65)). - Rolf Pleisch, May 14 2011
G.f.: x^2/(1-5*x-10*x^2).
a(n) = (i*sqrt(10))^(n-1) * ChebyshevU(n-1, -i*sqrt(5/8)). - G. C. Greubel, Jul 21 2023

A182512 a(n) = (16^n - 1)/5.

Original entry on oeis.org

0, 3, 51, 819, 13107, 209715, 3355443, 53687091, 858993459, 13743895347, 219902325555, 3518437208883, 56294995342131, 900719925474099, 14411518807585587, 230584300921369395, 3689348814741910323, 59029581035870565171, 944473296573929042739
Offset: 0

Views

Author

Brad Clardy, May 03 2012

Keywords

Comments

Even bisection of A015521 and also A112627. All of the terms are divisible by 3, even terms by 17.
These are binary numbers 11, 110011, 1100110011, ... - Jamie Simpson, Oct 28 2022

Crossrefs

Programs

  • Magma
    [(1/5)*2^(4*i) -(1/5): i in [0..30]];
    
  • Maple
    seq((16^n-1)/5, n=0..50); # Robert Israel, Jan 22 2016
  • Mathematica
    (16^Range[0,20]-1)/5 (* Harvey P. Dale, Aug 07 2019 *)
    LinearRecurrence[{17,-16},{0,3},20] (* Harvey P. Dale, Aug 07 2019 *)
  • PARI
    a(n) = (16^n - 1)/5; \\ Michel Marcus, Jan 22 2016

Formula

a(n) = 16*a(n-1) + 3 where a(0)=0.
a(n) = A015521(2n).
a(n) = A112627(2n) for n >= 1; a(0)=0.
G.f.: 3*x / ( (16*x-1)*(x-1) ). - R. J. Mathar, Apr 20 2015
a(n) = 3*A131865(n-1). - R. J. Mathar, Apr 20 2015
a(n) = A108020(n)/4. - Jamie Simpson, Oct 28 2022

A015551 Expansion of x/(1 - 6*x - 5*x^2).

Original entry on oeis.org

0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0

Views

Author

Keywords

Comments

Let the generator matrix for the ternary Golay G_12 code be [I|B], where the elements of B are taken from the set {0,1,2}. Then a(n)=(B^n)1,2 for instance. - _Paul Barry, Feb 13 2004
Pisano period lengths: 1, 2, 4, 4, 1, 4, 42, 8, 12, 2, 10, 4, 12, 42, 4, 16, 96, 12, 360, 4, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
    CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
  • PARI
    a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
  • Sage
    [lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
    

Formula

a(n) = 6*a(n-1) + 5*a(n-2).
a(n) = sqrt(14)*(3+sqrt(14))^n/28 - sqrt(14)*(3-sqrt(14))^n/28. - Paul Barry, Feb 13 2004

A247281 a(n) = 4^n -(-1)^n.

Original entry on oeis.org

0, 5, 15, 65, 255, 1025, 4095, 16385, 65535, 262145, 1048575, 4194305, 16777215, 67108865, 268435455, 1073741825, 4294967295, 17179869185, 68719476735, 274877906945, 1099511627775, 4398046511105, 17592186044415
Offset: 0

Views

Author

Paul Curtz, Sep 11 2014

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 4}, {0, 5}, 23] (* Jean-François Alcover, May 22 2016 *)
  • PARI
    concat(0, Vec(-5*x / ((x+1)*(4*x-1)) + O(x^100))) \\ Colin Barker, Sep 11 2014
    
  • PARI
    vector(100,n,4^(n-1)+(-1)^n) \\ Derek Orr, Sep 11 2014
    
  • Python
    def A247281(n): return (1<<(n<<1))+(1 if n&1 else -1) # Chai Wah Wu, Jun 28 2023

Formula

a(n) = 5*A015521(n).
a(n+1) = 10*A037481(n) + 5.
a(n+1) = 4*a(n) + 5*(-1)^n.
a(n) = 3*a(n-1) + 4*a(n-2). - Colin Barker, Sep 11 2014
G.f.: -5*x / ((x+1)*(4*x-1)). - Colin Barker, Sep 11 2014

Extensions

Typos in data fixed by Colin Barker, Sep 11 2014

A201455 a(n) = 3*a(n-1) + 4*a(n-2) for n>1, a(0)=2, a(1)=3.

Original entry on oeis.org

2, 3, 17, 63, 257, 1023, 4097, 16383, 65537, 262143, 1048577, 4194303, 16777217, 67108863, 268435457, 1073741823, 4294967297, 17179869183, 68719476737, 274877906943, 1099511627777, 4398046511103, 17592186044417, 70368744177663, 281474976710657
Offset: 0

Views

Author

Bruno Berselli, Jan 09 2013

Keywords

Comments

This is the Lucas sequence V(3,-4).
Inverse binomial transform of this sequence is A087451.

Crossrefs

Cf. for the same recurrence with initial values (i,i+1): A015521 (Lucas sequence U(3,-4); i=0), A122117 (i=1), A189738 (i=3).
Cf. for similar closed form: A014551 (2^n+(-1)^n), A102345 (3^n+(-1)^n), A087404 (5^n+(-1)^n).

Programs

  • Magma
    [n le 1 select n+2 else 3*Self(n)+4*Self(n-1): n in [0..25]];
    
  • Mathematica
    RecurrenceTable[{a[n] == 3 a[n - 1] + 4 a[n - 2], a[0] == 2, a[1] == 3}, a[n], {n, 25}]
  • Maxima
    a[0]:2$ a[1]:3$ a[n]:=3*a[n-1]+4*a[n-2]$ makelist(a[n], n, 0, 25);
    
  • PARI
    Vec((2-3*x)/((1+x)*(1-4*x)) + O(x^30)) \\ Michel Marcus, Jun 26 2015

Formula

G.f.: (2-3*x)/((1+x)*(1-4*x)).
a(n) = 4^n+(-1)^n.
a(n) = A086341(A047524(n)) for n>0, a(0)=2.
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 25*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
a(n) = (2/4^n) * Sum_{k = 0..n} binomial(4*n+1, 4*k). - Peter Bala, Feb 06 2019

A015592 a(n) = 10*a(n-1) + 11*a(n-2).

Original entry on oeis.org

0, 1, 10, 111, 1220, 13421, 147630, 1623931, 17863240, 196495641, 2161452050, 23775972551, 261535698060, 2876892678661, 31645819465270, 348104014117971, 3829144155297680, 42120585708274481, 463326442791019290, 5096590870701212191, 56062499577713334100
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct nodes of the complete graph K_12. Example: a(2)=10 because the walks of length 2 between the nodes A and B of the complete graph ABCDEFGHIJKL are ACB, ADB, AEB, AFB, AGB, AHB, AIB, AJB, AKB and ALB. - Emeric Deutsch, Apr 01 2004

Crossrefs

Programs

Formula

a(n) = 11^(n-1) - a(n-1). G.f.: x/(1 - 10x - 11x^2). - Emeric Deutsch, Apr 01 2004
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(5*x)*sinh(6*x)/6.
a(n) = (11^n - (-1)^n)/12. (End)

A083857 Square array T(n,k) of binomial transforms of generalized Fibonacci numbers, read by ascending antidiagonals, with n, k >= 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 3, 7, 0, 1, 3, 8, 15, 0, 1, 3, 9, 21, 31, 0, 1, 3, 10, 27, 55, 63, 0, 1, 3, 11, 33, 81, 144, 127, 0, 1, 3, 12, 39, 109, 243, 377, 255, 0, 1, 3, 13, 45, 139, 360, 729, 987, 511, 0, 1, 3, 14, 51, 171, 495, 1189, 2187, 2584, 1023, 0, 1, 3, 15, 57, 205, 648
Offset: 0

Views

Author

Paul Barry, May 06 2003

Keywords

Comments

Row n >= 0 of the array gives the solution to the recurrence b(k) = 3*b(k-1) + (n-2) * a(k-2) for k >= 2 with a(0) = 0 and a(1) = 1. These are the binomial transforms of the rows of the generalized Fibonacci numbers A083856.

Examples

			Array T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows:
  0, 1, 3,  7, 15,  31,  63,  127,  255, ...
  0, 1, 3,  8, 21,  55, 144,  377,  987, ...
  0, 1, 3,  9, 27,  81, 243,  729, 2187, ...
  0, 1, 3, 10, 33, 109, 360, 1189, 3927, ...
  0, 1, 3, 11, 39, 139, 495, 1763, 6279, ...
  0, 1, 3, 12, 45, 171, 648, 2457, 9315, ...
  ...
		

Crossrefs

Rows include A000225 (n=0), A001906 (n=1), A000244 (n=2), A006190 (n=3), A007482 (n=4), A030195 (n=5), A015521 (n=6).
Cf. A083856, A083861 (binomial transform), A083862 (main diagonal).

Formula

T(n, k) = ((3 + sqrt(4*n + 1))/2)^k / sqrt(4*n + 1) - ((3 - sqrt(4*n + 1))/2)^k / sqrt(4*n + 1) for n, k >= 0.
O.g.f. of row n >= 0: -x/(-1 + 3*x + (n-2)*x^2) . - R. J. Mathar, Nov 23 2007
T(n,k) = Sum_{i = 0..k} binomial(k,i)*A083856(n,i). - Petros Hadjicostas, Dec 24 2019

Extensions

Various sections edited by Petros Hadjicostas, Dec 24 2019

A131050 (1/5) * (A007318^4 - A007318^(-1)).

Original entry on oeis.org

1, 3, 2, 13, 9, 3, 51, 52, 18, 4, 205, 255, 130, 30, 5, 819, 1230, 765, 260, 45, 6, 3277, 5733, 4305, 1785, 455, 63, 7, 13107, 26216, 22932, 11480, 3570, 728, 84, 8
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2007

Keywords

Comments

Row sums = powers of 5: (1, 5, 25, 125, ...).
Left border = A015521: (1, 3, 13, 51, 205, 819, ...).

Examples

			First few rows of the triangle:
    1;
    3,   2;
   13,   9,   3;
   51,  52,  18,  4;
  205, 255, 130, 30, 5;
  ...
		

Crossrefs

Formula

Let P = Pascal's triangle, A007318. Then A131050 = (1/5) * (P^4 - 1/P); deleting the right border of zeros.

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A015541 Expansion of x/(1 - 5*x - 7*x^2).

Original entry on oeis.org

0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0

Views

Author

Keywords

Comments

Pisano period lengths: 1, 3, 8, 6, 8, 24, 6, 6, 24, 24, 5, 24, 12, 6, 8, 12, 16, 24, 120, 24, ... - R. J. Mathar, Aug 10 2012

Crossrefs

Programs

Formula

a(n) = 5*a(n-1) + 7*a(n-2).
Previous Showing 31-40 of 55 results. Next