cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A381824 Odd cubefull numbers: odd numbers that are divisible by the cube of any of their prime factors.

Original entry on oeis.org

1, 27, 81, 125, 243, 343, 625, 729, 1331, 2187, 2197, 2401, 3125, 3375, 4913, 6561, 6859, 9261, 10125, 12167, 14641, 15625, 16807, 16875, 19683, 24389, 27783, 28561, 29791, 30375, 35937, 42875, 50625, 50653, 59049, 59319, 64827, 68921, 78125, 79507, 83349, 83521, 84375, 91125
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2025

Keywords

Comments

Numbers whose prime factorization has primes and exponents that are larger than 2 (except for 1 whose prime factorization is empty).
Numbers k such that A020639(k) >= 3 and A051904(k) >= 3.

Crossrefs

Intersection of A005408 and A036966.
Subsequences: A016755 (odd cubes), A381825 (odd cubefull exponentially odd numbers).

Programs

  • Mathematica
    Join[{1}, Select[Range[3, 10000, 2], Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    isok(k) = k == 1 || (k % 2 && vecmin(factor(k)[, 2]) > 2);

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime >= 3} (1 + 1/(p^2*(p-1))) = (4/5) * A065483 = 1.07182732285947779727... .

A017115 a(n) = (8*n + 4)^3.

Original entry on oeis.org

64, 1728, 8000, 21952, 46656, 85184, 140608, 216000, 314432, 438976, 592704, 778688, 1000000, 1259712, 1560896, 1906624, 2299968, 2744000, 3241792, 3796416, 4410944, 5088448, 5832000, 6644672, 7529536, 8489664, 9528128, 10648000, 11852352, 13144256, 14526784, 16003008
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(8*n+4)^3: n in [0..35] ]; // Vincenzo Librandi, Jul 21 2011
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1},{64, 1728, 8000, 21952},24] (* Ray Chandler, Aug 04 2015 *)

Formula

G.f.: 64*(1+x)*(x^2 + 22*x + 1)/(x-1)^4. - R. J. Mathar, Jul 14 2016
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^3.
a(n) = 2^3*A016827(n) = 2^6*A016755(n).
Sum_{n>=0} 1/a(n) = 7*zeta(3)/512.
Sum_{n>=0} (-1)^n/a(n) = Pi^3/2048. (End)
E.g.f.: 64*exp(x)*(1 + 26*x + 36*x^2 + 8*x^3). - Stefano Spezia, May 27 2025

A017331 a(n) = (10*n + 5)^3.

Original entry on oeis.org

125, 3375, 15625, 42875, 91125, 166375, 274625, 421875, 614125, 857375, 1157625, 1520875, 1953125, 2460375, 3048625, 3723875, 4492125, 5359375, 6331625, 7414875, 8615125, 9938375, 11390625, 12977875, 14706125, 16581375, 18609625, 20796875, 23149125, 25672375
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: 125*(x+1)*(x^2 + 22*x + 1)/(x-1)^4. - Colin Barker, Nov 14 2012
From Amiram Eldar, Apr 18 2023: (Start)
a(n) = A017329(n)^3.
a(n) = 5^3 * A016755(n).
Sum_{n>=0} 1/a(n) = 7*zeta(3)/1000.
Sum_{n>=0} (-1)^n/a(n) = Pi^3/4000. (End)

A239065 n^3*(n^4 + n^2 - 1).

Original entry on oeis.org

1, 152, 2403, 17344, 81125, 287496, 840007, 2129408, 4841289, 10099000, 19646891, 36078912, 63117613, 105948584, 171615375, 269479936, 411753617, 614103768, 896340979, 1283192000, 1805163381, 2499500872, 3411249623, 4594420224, 6113265625, 8043673976
Offset: 1

Views

Author

Philippe Deléham, Mar 09 2014

Keywords

Comments

Row sums of A016755 read as triangular array.

Examples

			A016755, as triangular array begins:
1;
27, 125;
343, 729, 1331;
2197, 3375, 4913, 6859;
9261, 12167, 15625, 19683, 24389;
29791, 35937, 42875, 50653, 59319, 68921;..
Row sums are:
1;
3^3 + 5^3 = 27 + 125 = 152;
7^3 + 9^3 + 11^3 = 343 + 729 + 1331 = 2403;
13^3 + 15^3 + 17^3 + 19^3 = 2197 + 3375 + 4913 + 6859 = 17344;
21^3 + 23^3 + 25^3 + 27^3 + 29^3 = 9261 + 12167 + 15625 + 19683 + 24389 = 81125;
31^3 + 33^3 + 35^3 + 37^3 + 39^3 + 41^3 = 287496 = 66^3.
		

Crossrefs

Cf. A016755.

Programs

Formula

a(n) = n^7 + n^5 - n^3.
G.f.: x*(1+144*x+1215*x^2+2320*x^3+1215*x^4+144*x^5+x^6)/(x-1)^8.

A280865 Expansion of 1/(1 - Sum_{k>=0} x^((2*k+1)^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 33, 37, 42, 48, 55, 63, 72, 82, 93, 105, 118, 132, 147, 163, 180, 198, 217, 237, 258, 280, 303, 327, 352, 378, 405, 433, 463, 496
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 09 2017

Keywords

Comments

Number of compositions (ordered partitions) of n into odd cubes (A016755).

Examples

			a(28) = 3 because we have [27, 1], [1, 27] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 82; CoefficientList[Series[1/(1 - Sum[x^(2 k + 1)^3, {k, 0, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=0} x^((2*k+1)^3)).

A330414 Cyclops primes that become a cube when the middle "0" is removed.

Original entry on oeis.org

68059, 1170649, 4560533, 7530571, 136501919, 158103251, 173703979, 212503933, 226605187, 356101289, 362604691, 382702753, 439806977, 518905117, 811802737, 954403993, 19484041249, 19956016979, 22635071297, 24658046551, 27263097773, 34635012697, 35326042667, 37166072149, 39668022287, 41499095543, 44839062449
Offset: 1

Views

Author

Rodolfo Ruiz-Huidobro, Dec 14 2019

Keywords

Examples

			a(1) = 68059 because 6859 = 19^3 is the first cube that results from the removal of the 0 digit from a cyclops prime.
136501919 is a term because 13651919 is 239^3.
		

Crossrefs

Programs

  • Maple
    count:= 0: Res:= NULL:
    for d from 2 to 6 do
      for n from ceil(10^((2*d-1)/3)) to floor((10^(2*d)-1)^(1/3)) do
        L:=convert(n^3,base,10);
        if member(0,L) then next fi;
        a:= n^3 mod 10^d;
        p:= 10*(n^3-a)+a;
        if isprime(p) then
          count:= count+1; Res:= Res, p;
        fi
    od od:
    Res; # Robert Israel, Dec 24 2019
  • PARI
    seq(n)={my(i=0, L=List()); while(#Lt==0,v), my(m=fromdigits(concat([v[1..k], 0, v[k+1..#v]]))); if(isprime(m), listput(L,m)))); Vec(L)} \\ Andrew Howroyd, Dec 20 2019

A338447 Sums of consecutive odd positive cubes.

Original entry on oeis.org

1, 27, 28, 125, 152, 153, 343, 468, 495, 496, 729, 1072, 1197, 1224, 1225, 1331, 2060, 2197, 2403, 2528, 2555, 2556, 3375, 3528, 4257, 4600, 4725, 4752, 4753, 4913, 5572, 6859, 6903, 7632, 7975, 8100, 8127, 8128, 8288, 9261, 10485, 11772, 11816, 12167, 12545, 12888, 13013
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2020

Keywords

Examples

			495 is in the sequence because 495 = 3^3 + 5^3 + 7^3.
		

Crossrefs

Programs

  • PARI
    lista(nn) = {my(list = List()); forstep (i=1, nn, 2, my(s = 0); forstep(j=i, 1, -2, s += j^3; if (s > nn^3, break); listput(list, s););); Set(list);} \\ Michel Marcus, Nov 13 2020

A371835 Triangle read by rows: T(n,k) is the number of points (x,y,z) satisfying |x|+|y|+|z|<=n and max(|x|,|y|,|z|)<=k; 0<=k<=n.

Original entry on oeis.org

1, 1, 7, 1, 19, 25, 1, 27, 57, 63, 1, 27, 93, 123, 129, 1, 27, 117, 195, 225, 231, 1, 27, 125, 263, 341, 371, 377, 1, 27, 125, 311, 461, 539, 569, 575, 1, 27, 125, 335, 569, 719, 797, 827, 833, 1, 27, 125, 343, 649, 895, 1045, 1123, 1153, 1159
Offset: 0

Views

Author

Peter Kagey, Apr 07 2024

Keywords

Comments

For all pairs of positive integers (a,b), T(a*m,b*m) satisfies a cubic polynomial in m.

Examples

			Table begins:
  n\k| 0  1   2   3   4    5    6    7    8    9   10
  ---+-----------------------------------------------
   0 | 1
   1 | 1  7
   2 | 1 19  25
   3 | 1 27  57  63
   4 | 1 27  93 123 129
   5 | 1 27 117 195 225  231
   6 | 1 27 125 263 341  371  377
   7 | 1 27 125 311 461  539  569  575
   8 | 1 27 125 335 569  719  797  827  833
   9 | 1 27 125 343 649  895 1045 1123 1153 1159
  10 | 1 27 125 343 697 1051 1297 1447 1525 1555 1561
		

Formula

T(n,k) = 8*n^3 + 12*n^2 + 6*n + 1 = A016755(k) if k <= n/3.
T(m,m) = (4*n^3 + 6*n^2 + 8*n + 3)/3 = A001845(m).
T(2m,m) = (20*n^3 + 24*n^2 + 10*n + 3)/3 = A371532(m).
T(3m,2m) = 32*n^3 + 18*n^2 + 6*n + 1 = A371515(m).
T(4m,3m) = (244*n^3 + 96*n^2 + 26*n + 3)/3.
T(5m,2m) = (188*m^3 + 132*m^2 + 28*m + 3)/3.
T(5m,3m) = (404*m^3 + 150*m^2 + 28*m + 3)/3.
T(5m,4m) = (488*m^3 + 150*m^2 + 34*m + 3)/3.
Conjectures:
T(n,k) = (-84*k^3 + 108*k^2*n - 72*k^2 - 36*k*n^2 + 72*k*n - 6*k + 4*n^3 - 12*n^2 + 8*n + 3)/3 for (n-2)/3 <= k <= n/2.
T(n,k) = (12*k^3 - 36*k^2*n + 36*k*n^2 + 6*k - 8*n^3 + 6*n^2 + 2*n + 3)/3 for (n-1)/2 <= k <= n.
The two conjectures are true. See links. - Sela Fried, Jul 05 2024

A385029 a(n) = Sum_{-n <= a, b, c <= n} (b^2 - 4*a*c).

Original entry on oeis.org

18, 250, 1372, 4860, 13310, 30758, 63000, 117912, 205770, 339570, 535348, 812500, 1194102, 1707230, 2383280, 3258288, 4373250, 5774442, 7513740, 9648940, 12244078, 15369750, 19103432, 23529800, 28741050, 34837218, 41926500, 50125572, 59559910, 70364110, 82682208, 96668000
Offset: 1

Views

Author

Darío Clavijo, Jun 15 2025

Keywords

Comments

There are (2*n + 1)^3 combinations of a, b, c.

Crossrefs

Programs

  • Mathematica
    A385029[n_] := (n*(n + 1)*(2*n + 1)^3)/3;
    Array[A385029, 50] (* Paolo Xausa, Jun 18 2025 *)
  • Python
    a = lambda n: ((n*n+n)*((n << 1)+1)**3)//3
    print([a(n) for n in range(1, 11)])

Formula

a(n) = (n*(n+1)*(2*n+1)^3)/3.
a(n) = (A055112(n)*A016754(n))/3.
a(n) = (A002378(n)*A016755(n))/3.
G.f.: 2*x*(9 + 71*x + 71*x^2 + 9*x^3)/(1 - x)^6. - Stefano Spezia, Jun 15 2025
From Amiram Eldar, Jun 18 2025; (Start)
Sum_{n>=1} 1/a(n) = 21*(1 - zeta(3)/2) - 12*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi^3/8 + 3*Pi - 21. (End)

A303743 a(n) is a number of lattice points in 3D Cartesian grid between cube with edge length 2*n centered in origin and its inscribed sphere. Three pairs of the cube's faces are parallel to the planes XOY, XOZ, YOZ respectively.

Original entry on oeis.org

0, 0, 8, 92, 220, 412, 784, 1272, 1848, 2696, 3692, 5020, 6460, 8176, 10248, 12720, 15464, 18476, 21988, 25924, 30016, 35040, 40248, 46052, 52388, 59132, 66364, 74416, 83256, 92304, 102500, 112988, 124076, 136252, 148936, 162648, 176928, 192332, 208100, 225284, 243088
Offset: 1

Views

Author

Kirill Ustyantsev, Apr 29 2018

Keywords

Comments

If two parallel faces of the inscribed cube are parallel XOY-plane and other two pairs are parallel planes x=y and x=-y respectively we'll have another sequence.

Examples

			For n=3 we have 8 points between the defined cube and its inscribed sphere:
  (-2,-2,-2)
  (-2,-2, 2)
  (-2, 2,-2)
  (-2, 2, 2)
  ( 2,-2,-2)
  ( 2,-2, 2)
  ( 2, 2,-2)
  ( 2, 2, 2)
		

Crossrefs

For the 2D case see A303642.

Programs

  • PARI
    a(n) = sum(x=-n+1, n-1, sum(y=-n+1, n-1, sum(z=-n+1, n-1, x*x+y*y+z*z>n^2))); \\ Michel Marcus, Jun 23 2018
  • Python
    for n in range (1, 42):
      count=0
      n2 = n*n
      for x in range(-n+1, n):
        for y in range(-n+1, n):
          for z in range(-n+1, n):
            if x*x+y*y+z*z > n2:
              count += 1
      print(count)
    

Formula

a(n) = A016755(n-1) - A000605(n) - 6.
Previous Showing 21-30 of 31 results. Next