cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 31 results. Next

A047374 Numbers that are congruent to {4, 5} mod 7.

Original entry on oeis.org

4, 5, 11, 12, 18, 19, 25, 26, 32, 33, 39, 40, 46, 47, 53, 54, 60, 61, 67, 68, 74, 75, 81, 82, 88, 89, 95, 96, 102, 103, 109, 110, 116, 117, 123, 124, 130, 131, 137, 138, 144, 145, 151, 152, 158, 159, 165, 166, 172
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200], MemberQ[{4, 5}, Mod[#, 7]] &] (* Amiram Eldar, May 07 2021 *)
  • PARI
    a(n) = (14*n - 5*(-1)^n - 3)/4 \\ David Lovler, Sep 15 2022

Formula

G.f.: x*(4 + x + 2*x^2)/((1 + x)*(x - 1)^2). - R. J. Mathar, Dec 04 2011
a(n) = -(5/4)*(-1)^n + 7*(n-1)/2 + 11/4. - Viet Quoc Le Tran, Jun 14 2014
a(n) = (14*n - 5*(-1)^n - 3)/4. - David Lovler, Sep 15 2022
E.g.f.: 2 + ((14*x - 3)*exp(x) - 5*exp(-x))/4. - David Lovler, Sep 15 2022

A168336 a(n) = 5 + 7*floor((n-1)/2).

Original entry on oeis.org

5, 5, 12, 12, 19, 19, 26, 26, 33, 33, 40, 40, 47, 47, 54, 54, 61, 61, 68, 68, 75, 75, 82, 82, 89, 89, 96, 96, 103, 103, 110, 110, 117, 117, 124, 124, 131, 131, 138, 138, 145, 145, 152, 152, 159, 159, 166, 166, 173, 173, 180, 180, 187, 187, 194, 194, 201, 201, 208
Offset: 1

Views

Author

Vincenzo Librandi, Nov 23 2009

Keywords

Crossrefs

Programs

  • Magma
    [5+7*Floor((n-1)/2): n in [1..70]]; // Vincenzo Librandi, Sep 18 2013
  • Mathematica
    Table[5 + 7 Floor[(n - 1)/2], {n, 60}] (* Bruno Berselli, Sep 18 2013 *)
    CoefficientList[Series[(5 + 2 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 18 2013 *)

Formula

a(n) = 7*n - a(n-1) - 4, with n>1, a(1)=5.
G.f.: x*(5 + 2*x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 18 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 18 2013
a(n) = (14*n - 7*(-1)^n - 1)/4. - Bruno Berselli, Sep 18 2013
a(n) = A168332(n) - 1 = A168373(n) + 1. - Bruno Berselli, Sep 18 2013
E.g.f.: (1/2)*(4 + (7*x - 4)*cosh(x) + (7*x + 3)* sinh(x)). - G. C. Greubel, Jul 18 2016

Extensions

New definition by Vincenzo Librandi, Sep 18 2013

A256101 The broken eggs problem.

Original entry on oeis.org

301, 721, 1141, 1561, 1981, 2401, 2821, 3241, 3661, 4081, 4501, 4921, 5341, 5761, 6181, 6601, 7021, 7441, 7861, 8281, 8701, 9121, 9541, 9961, 10381, 10801, 11221, 11641, 12061, 12481, 12901, 13321, 13741, 14161, 14581, 15001, 15421, 15841
Offset: 1

Views

Author

Wolfdieter Lang, Apr 10 2015

Keywords

Comments

This is a problem of byzantine mathematics appearing in the Codex Vinobonensis Phil. Gr. 65. See the Hunger-Vogel reference, p. 73, problem 86.
It also appears in the Tropfke reference on p. 640, 4.3.5.2, Die Eierfrau, as a special case of the Chinese Ta-yen rule (method of the great extension) treated on p. 636.
This is also a problem posed in the Alten et al. reference, p. 203, Aufgabe 3.1.6 (taken from Tropfke).
For the statement of the problem (in another setting) see the Cherowitzo link, where it is considered as an application of the Chinese remainder theorem.
The problem is to find all solutions of the common congruences: N congruent to 1 modulo 2, 3, 4, 5 and 6, and 0 modulo 7. For the application of the Chinese remainder theorem one first disposes of the moduli 2 and 6 (these congruences follow from the others).
The egg-selling woman had 301 eggs before they were broken according to problem 86 with this special solution in the Hunger-Vogel reference.

References

  • H.-W. Alten et al., 4000 Jahre Algebra, 2. Auflage, Springer, 2014, p. 203.
  • H. Hunger and K. Vogel, Ein byzantinisches Rechenbuch des 15.Jahrhunderts. 100 Aufgaben aus dem Codex Vindobonensis Phil. Gr. 65. (in Greek and German translation), Hermann Böhlaus Nachf., Wien, 1963 (Österr. Akad. d. Wiss., phil.-hist. Kl., Denkschriften, 78. Band, 2. Abhandlung), p. 73.
  • J. Tropfke, Geschichte der Elementarmathematik, Band 1, Arithmetik und Algebra, 4. Auflage, Walter de Gruyter, Berlin, New York , 1980, p. 640.

Crossrefs

Cf. A017041.

Programs

  • Magma
    [420*n-119: n in [1..40]]; // Vincenzo Librandi, Apr 11 2015
    
  • Maple
    A256101:=n->420*n-119: seq(A256101(n), n=1..50); # Wesley Ivan Hurt, Apr 11 2015
  • Mathematica
    CoefficientList[Series[(301 + 119 x) / (1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 11 2015 *)
  • Python
    terms=[]
    n=50 #terms here
    for i in range(1, n+1):
        ans=420*i-119
        terms.append(ans)
    print(terms)
    # Adam Hugill, Feb 22 2022

Formula

a(n) = 420*n-119, n >= 1, (note that 420 = 3*4*5*7, with pairwise coprime factors needed for the Chinese remainder theorem).
a(n) = 60*A017041(n-1) + 1, n >= 1.
G.f.: x*7*(43+17*x)/(1-x)^2. [Corrected by Vincenzo Librandi, Apr 11 2015]

Extensions

Corrected G.f. rewritten. - Wolfdieter Lang, Apr 15 2015

A319524 a(n) is the smallest number that belongs simultaneously to the two arithmetic progressions prime(n) + m*prime(n+1) and prime(n+1) + m*prime(n+2), m >= 1, n >= 1.

Original entry on oeis.org

8, 33, 40, 128, 115, 302, 226, 226, 835, 401, 734, 1718, 1030, 842, 3121, 3475, 1401, 2339, 5108, 1969, 3233, 2486, 6491, 9692, 10298, 5560, 11552, 6211, 4177, 7987, 6022, 18763, 16678, 21893, 8001, 25585, 13523, 9682, 30961, 32035, 7057, 36089, 19105, 39002, 7162, 47041, 50163, 51752
Offset: 1

Views

Author

Keywords

Comments

Construct a table T in which T(m,n) = prime(n) + m*prime(n+1) as shown below. Then a(n) is defined as the smallest number appearing both in column n and column n+1, so a(1)=8, a(2)=33, a(3)=40, etc.
.
m\n| 1 2 3 4 5 6 7 8 ...
----+--------------------------------------------------
1 | 5 --8 12 18 24 30 36 42 ...
|
2 | 8-- 13 19 29 37 47 55 65 ...
|
3 | 11 18 26 40 50 64 74 88 ...
| /
4 | 14 23 33 / 51 63 81 93 111 ...
| / /
5 | 17 28 / 40- 62 76 98 112 134 ...
| /
6 | 20 33- 47 73 89 115 131 157 ...
| /
7 | 23 38 54 84 102 / 132 150 180 ...
| /
8 | 26 43 61 95 115 149 169 203 ...
|
9 | 29 48 68 106 128 166 188 226 ...
| / /
10 | 32 53 75 117 / 141 183 207 / 249 ...
| / /
11 | 35 58 82 128 154 200 226 272 ...
|
12 | 38 63 89 139 167 217 245 295 ...
|
13 | 41 68 96 150 180 234 264 318 ...
|
14 | 44 73 103 161 193 251 283 341 ...
|
15 | 47 78 110 172 206 268 302 364 ...
| /
16 | 50 83 117 183 219 285 / 321 387 ...
| /
17 | 53 88 124 194 232 302 340 410 ...
|
... |... ... ... ... ... ... ... ... ...
Conjectures:
1. There are infinitely many pairs of consecutive equal terms. (Note that the first pair is (a(7), a(8)).)
2. There exists no N such that the sequence is monotonic for n > N.
From Amiram Eldar, Sep 22 2018: (Start)
Theorem 1: The intersection of the two mentioned arithmetic progressions is always nonempty.
Corollary: The sequence is infinite. (End)
Sequences that derive from this:
1. Positions in {s(n)} at which a(n) occurs: (2,6,5,11,8,17,19,...).
2. Positions in {s(n+1)} at which a(n) occurs: (1,4,3,9,6,15,15,...).
3. Differences between these two sequences: (1,2,2,2,2,4,...).

Crossrefs

Programs

  • GAP
    P:=Filtered([1..10000],IsPrime);;
    T:=List([1..Length(P)-1],n->List([1..Length(P)-1],m->P[n]+m*P[n+1]));;
    a:=List([1..50],k->Minimum(List([1..Length(T)-1],i->Intersection(T[i],T[i+1]))[k])); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    a[n_]:=ChineseRemainder[{Prime[n],Prime[n+1]},{Prime[n+1],Prime[n+2]} ];Array[a,44] (* Amiram Eldar, Sep 22 2018 *)

Extensions

Table from Jon E. Schoenfield, Sep 23 2018
More terms from Amiram Eldar, Sep 22 2018

A354937 Row 7 of A354940: Numbers k for which A345992(k) = 7, divided by 7.

Original entry on oeis.org

4, 5, 8, 11, 15, 19, 22, 25, 29, 32, 39, 43, 47, 50, 53, 57, 61, 64, 67, 71, 78, 81, 89, 92, 95, 99, 103, 106, 109, 113, 127, 131, 134, 137, 141, 151, 155, 162, 169, 173, 176, 179, 183, 190, 193, 197, 211, 218, 229, 232, 239, 243, 256, 257, 263, 267, 271, 274, 277, 281, 291, 295, 302, 309, 313, 316, 323, 337, 344
Offset: 1

Views

Author

Antti Karttunen, Jun 15 2022

Keywords

Comments

Apparently, all terms are either of the form 7k+1 (in A016993), 7k+4 (A017029) or 7k+5 (A017041).

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), 7*n], m++]; GCD[7*n, m] == 7]; Select[Range[345], q] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    A354937(n) = A354940sq(7,n);

A047303 Numbers that are congruent to {0, 1, 2, 3, 4, 6} mod 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 76
Offset: 1

Views

Author

Keywords

Comments

Complement of A017041. - Michel Marcus, Sep 08 2015

Crossrefs

Cf. A017041 (7n+5).

Programs

  • Magma
    [n: n in [0..100] | n mod 7 in [0..4] cat [6]]; // Vincenzo Librandi, Sep 08 2015
  • Maple
    A047303:=n->n+1+floor((n-2)/6)-ceil((n-1)/6)+floor((n-1)/6)-ceil(n/6)+floor(n/6): seq(A047303(n), n=1..100); # Wesley Ivan Hurt, Sep 07 2015
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4, 6}, Mod[#, 7]] &] (* Vincenzo Librandi, Sep 08 2015 *)
    LinearRecurrence[{1,0,0,0,0,1,-1},{0,1,2,3,4,6,7},80] (* Harvey P. Dale, Sep 24 2016 *)

Formula

G.f.: x^2*(1+x+x^2+x^3+2*x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 07 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + 1 + floor((n-2)/6) - ceiling((n-1)/6) + floor((n-1)/6) - ceiling(n/6) + floor(n/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n - 51 + 3*cos(n*Pi) + 4*sqrt(3)*cos((1-4*n)*Pi/6) + 12*sin((1+2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-3, a(6k-2) = 7k-4, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)

Extensions

More terms from Vincenzo Librandi, Sep 08 2015

A047370 Numbers that are congruent to {2, 3, 5} mod 7.

Original entry on oeis.org

2, 3, 5, 9, 10, 12, 16, 17, 19, 23, 24, 26, 30, 31, 33, 37, 38, 40, 44, 45, 47, 51, 52, 54, 58, 59, 61, 65, 66, 68, 72, 73, 75, 79, 80, 82, 86, 87, 89, 93, 94, 96, 100, 101, 103, 107, 108, 110, 114, 115, 117, 121, 122, 124, 128, 129, 131, 135, 136, 138, 142
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Union of A017005, A017017 and A017041. - Michel Marcus, May 25 2014

Crossrefs

Programs

  • Magma
    [7*Floor((n-1)/3)+2^((n-1) mod 3)+1: n in [1..50]]; // Wesley Ivan Hurt, May 25 2014
    
  • Maple
    A047370:=n->7*floor((n-1)/3) + 2^((n-1) mod 3)+1; seq(A047370(n), n=1..50); # Wesley Ivan Hurt, May 25 2014
  • Mathematica
    Select[Range[200], MemberQ[{2,3,5}, Mod[#,7]]&] (* or *) LinearRecurrence[ {1,0,1,-1}, {2,3,5,9}, 60] (* Harvey P. Dale, Apr 29 2013 *)
    Table[7*Floor[(n - 1)/3] + 2^Mod[n - 1, 3] + 1, {n, 50}] (* Wesley Ivan Hurt, May 25 2014 *)
  • PARI
    x='x + O('x^50); Vec(x*(2+x+2*x^2+2*x^3)/((1+x+x^2)*(x-1)^2)) \\ G. C. Greubel, Feb 21 2017

Formula

G.f.: x*(2+x+2*x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 04 2011
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4, with a(1)=2, a(2)=3, a(3)=5, a(4)=9. - Harvey P. Dale, Apr 29 2013
a(n) = 7*floor((n-1)/3)+2^((n-1) mod 3)+1. - Gary Detlefs, May 25 2014
a(n) = (1/9)*(21*n+4*sqrt(3)*sin((2*Pi*n)/3)-6*cos((2*Pi*n)/3)-12). - Alexander R. Povolotsky, May 25 2014
a(3k) = 7k-2, a(3k-1) = 7k-4, a(3k-2) = 7k-5. - Wesley Ivan Hurt, Jun 10 2016

Extensions

More terms from Wesley Ivan Hurt, May 25 2014

A111367 Numbers k such that 7*k + 5 is prime.

Original entry on oeis.org

0, 2, 6, 8, 12, 14, 18, 24, 32, 36, 38, 44, 54, 56, 62, 66, 72, 74, 84, 86, 96, 98, 102, 104, 108, 122, 126, 132, 138, 144, 152, 156, 164, 168, 174, 176, 182, 186, 188, 204, 206, 212, 218, 222, 228, 236, 242, 248, 254, 258, 266, 278, 282, 284, 294, 308, 314, 324
Offset: 1

Views

Author

Parthasarathy Nambi, Nov 07 2005

Keywords

Examples

			k=108 is a term because 7*k + 5 = 761 is prime.
		

Crossrefs

Programs

A116728 Number of permutations of length n which avoid the patterns 321, 1243, 2134.

Original entry on oeis.org

1, 2, 5, 12, 19, 26, 33, 40, 47, 54, 61, 68, 75, 82, 89, 96, 103, 110, 117, 124, 131, 138, 145, 152, 159, 166, 173, 180, 187, 194, 201, 208, 215, 222, 229, 236, 243, 250, 257, 264, 271, 278, 285, 292, 299, 306, 313, 320, 327, 334, 341, 348, 355, 362, 369
Offset: 1

Views

Author

Lara Pudwell, Feb 26 2006

Keywords

Crossrefs

Cf. A017041.

Programs

  • Maple
    t := taylor((4*x^3+2*x^2+1)*x/(x-1)^2,x,51):seq(coeff(t,x,n),n=1..50); # Nathaniel Johnston, Apr 27 2011
  • PARI
    Vec(x*(1 + 2*x^2 + 4*x^3) / (1 - x)^2 + O(x^70)) \\ Colin Barker, Oct 24 2017

Formula

G.f.: x*(1 + 2*x^2 + 4*x^3) / (1 - x)^2.
For n >= 3, a(n) = 7*n - 16. - Franklin T. Adams-Watters, Sep 16 2006
a(n) = 2*a(n-1) - a(n-2) for n=4. - Colin Barker, Oct 24 2017
a(n) = A017041(n-3) for n > 2. - Georg Fischer, Oct 07 2018
E.g.f.: exp(x)*(7*x - 16) + 2*(x^2 + 5*x + 8). - Stefano Spezia, Oct 10 2022

A137187 Lucky numbers (A000959) which are congruent to 5 mod 7.

Original entry on oeis.org

33, 75, 159, 201, 285, 327, 495, 537, 579, 621, 831, 873, 957, 1041, 1167, 1209, 1251, 1419, 1503, 1545, 1587, 1797, 1839, 1923, 1965, 2133, 2217, 2301, 2343, 2427, 2511, 2763, 2973, 3099, 3183, 3351, 3477, 3603, 3687, 3771, 3897, 3981, 4023, 4107, 4443
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2008

Keywords

Crossrefs

Intersection of A000959 and A017041.
Previous Showing 21-30 of 31 results. Next