cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 65 results. Next

A166464 a(n) = (3 + 2*n + 6*n^2 + 4*n^3)/3.

Original entry on oeis.org

1, 5, 21, 57, 121, 221, 365, 561, 817, 1141, 1541, 2025, 2601, 3277, 4061, 4961, 5985, 7141, 8437, 9881, 11481, 13245, 15181, 17297, 19601, 22101, 24805, 27721, 30857, 34221, 37821, 41665, 45761, 50117, 54741, 59641, 64825, 70301, 76077, 82161, 88561, 95285, 102341, 109737, 117481, 125581
Offset: 0

Views

Author

Paul Curtz, Oct 14 2009

Keywords

Comments

Atomic number of first transition metal of period 2n (n>3) or of the element after n-th alkaline earth metal. This can be calculated by finding the sum of the first n even squares plus 1. - Natan Arie Consigli, Jul 03 2016

References

  • JANET,Charles, La structure du Noyau de l'atome,consideree dans la Classification periodique,des elements chimiques,1927 (Novembre),N. 2,BEAUVAIS,67 pages,3 leaflets.

Crossrefs

Programs

  • Magma
    [(3+2*n+6*n^2+4*n^3)/3: n in [0..60]]; // G. C. Greubel, Jul 27 2024
    
  • Mathematica
    Table[(3+2*n+6*n^2+4*n^3)/3, {n,0,60}] (* G. C. Greubel, May 15 2016 *)
  • PARI
    a(n)=(3+2*n+6*n^2+4*n^3)/3 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [(3+2*n+6*n^2+4*n^3)//3 for n in range(61)] # G. C. Greubel, Jul 27 2024

Formula

a(n) - a(n-1) = 4*(n+1)^2 = A016742(n+1).
a(n) - 2*a(n-1) + a(n-2) = -4 + 8*n = A017113(n+1).
a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 8 = A010731(n).
a(n) - 4*a(n-1) + 6*a(n-2) - 4*a(n-3) + a(n-4) = 0.
Binomial transform of quasi-finite sequence 1,4,12,8,0,(0 continued).
G.f.: (1+x+7*x^2-x^3)/(1-x)^4. - R. J. Mathar, Feb 15 2010
From Natan Arie Consigli, Jul 03 2016: (Start)
a(n) = A018227(2*n) + 3.
a(n) = A002492(n) + 1. (End)
E.g.f.: (1/3)*(3 + 12*x + 18*x^2 + 4*x^3)*exp(x). - G. C. Greubel, Jul 27 2024

Extensions

Edited by N. J. A. Sloane, Oct 17 2009
More terms a(11)-a(35) from Vincenzo Librandi, Oct 17 2009

A047463 Numbers that are congruent to {2, 4} mod 8.

Original entry on oeis.org

2, 4, 10, 12, 18, 20, 26, 28, 34, 36, 42, 44, 50, 52, 58, 60, 66, 68, 74, 76, 82, 84, 90, 92, 98, 100, 106, 108, 114, 116, 122, 124, 130, 132, 138, 140, 146, 148, 154, 156, 162, 164, 170, 172, 178, 180, 186, 188, 194, 196, 202, 204, 210, 212, 218, 220, 226, 228, 234
Offset: 1

Views

Author

Keywords

Comments

First differences in A010696.

Crossrefs

Union of A017089 and A017113.
Cf. A014848.

Programs

  • Magma
    [ n: n in [2..234 by 2] | n mod 8 in [2,4] ];  // Bruno Berselli, May 11 2011
  • Mathematica
    Select[Range[250], MemberQ[{2, 4}, Mod[#, 8]] &] (* Amiram Eldar, Dec 18 2021 *)

Formula

a(n) = 8*n - a(n-1) - 10, with a(1)=2. - Vincenzo Librandi, Aug 06 2010
From Bruno Berselli, May 11 2011: (Start)
G.f.: 2*x*(1+x+2*x^2)/((1+x)*(1-x)^2).
a(n) = 4*n-(-1)^n-3.
Sum_{i=1..n} a(i) = 2*A014848(n).
a(n) = 2*A042963(n-1). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 + log(2)/8. - Amiram Eldar, Dec 18 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A047395 Numbers that are congruent to {0, 2, 6} mod 8.

Original entry on oeis.org

0, 2, 6, 8, 10, 14, 16, 18, 22, 24, 26, 30, 32, 34, 38, 40, 42, 46, 48, 50, 54, 56, 58, 62, 64, 66, 70, 72, 74, 78, 80, 82, 86, 88, 90, 94, 96, 98, 102, 104, 106, 110, 112, 114, 118, 120, 122, 126, 128, 130, 134, 136, 138, 142, 144, 146, 150, 152, 154, 158
Offset: 1

Views

Author

Keywords

Comments

The members of this sequence together with the members of A017113 give the even numbers. - Wesley Ivan Hurt, Apr 01 2014

Crossrefs

Programs

Formula

From R. J. Mathar, Dec 05 2011: (Start)
G.f.: 2*x^2*(1+x)^2 / ((1+x+x^2)*(x-1)^2).
a(n) = 2 * A042965(n). (End)
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 2*(12*n-12+3*cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-6, a(3k-2) = 8k-8. (End)
a(n) = 2*(n - 1 + floor(n/3)). - Wolfdieter Lang, Sep 11 2021
Sum_{n>=2} (-1)^n/a(n) = sqrt(2)*log(sqrt(2)+2)/4 - (sqrt(2)-1)*log(2)/8. - Amiram Eldar, Dec 19 2021

A047406 Numbers that are congruent to {4, 6} mod 8.

Original entry on oeis.org

4, 6, 12, 14, 20, 22, 28, 30, 36, 38, 44, 46, 52, 54, 60, 62, 68, 70, 76, 78, 84, 86, 92, 94, 100, 102, 108, 110, 116, 118, 124, 126, 132, 134, 140, 142, 148, 150, 156, 158, 164, 166, 172, 174, 180, 182, 188, 190, 196, 198, 204, 206, 212, 214, 220, 222, 228
Offset: 1

Views

Author

Keywords

Comments

In groups of four, add the odd and even numbers (4=1+3, 6=2+4; 12=5+7, 14=6+8; etc.). - George E. Antoniou, Dec 12 2001
The first 250 terms (4 through 998) are the 250 non-occurring Fibonacci number residues modulo 1000; i.e., if leading zeros are supplied as necessary for the terms having fewer than three digits, these are the 250 sets of three digits that never appear as the last three digits of a Fibonacci number. - Jon E. Schoenfield, Jul 05 2010

Examples

			a(2) = 8*2 - 4 - 6 = 6;
a(3) = 8*3 - 6 - 6 = 12;
a(4) = 8*4 - 12 - 6 = 14.
		

Crossrefs

Union of A017113 and A017137.
Cf. A042964.

Programs

Formula

a(n) = A042964(n)*2.
a(n) = (4*n - 1 - (-1)^n). - Jon E. Schoenfield, Jul 05 2010
a(n) = 8*n - a(n-1) - 6 (with a(1)=4). - Vincenzo Librandi, Aug 05 2010
G.f.: 2*x*(2+x+x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 18 2013: (Start)
a(n) = (8 * ceiling(n/2) - 4) * (n mod 2) + (8 * ceiling(n/2) - 2) * (n+1 mod 2).
a(n) = 8 * ceiling(n/2) - 3 + (-1)^n. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/16 - log(2)/8. - Amiram Eldar, Dec 19 2021
E.g.f.: 2*(1 + 2*x*exp(x) - cosh(x)). - David Lovler, Sep 02 2022

A342090 Numbers with at least one prime power p^e in their prime factorization such that p|e.

Original entry on oeis.org

4, 12, 16, 20, 27, 28, 36, 44, 48, 52, 54, 60, 64, 68, 76, 80, 84, 92, 100, 108, 112, 116, 124, 132, 135, 140, 144, 148, 156, 164, 172, 176, 180, 188, 189, 192, 196, 204, 208, 212, 216, 220, 228, 236, 240, 244, 252, 256, 260, 268, 270, 272, 276, 284, 292, 297, 300
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2021

Keywords

Comments

Numbers with a unitary divisor of the form p^(m*p) where p is a prime and m > 0.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 1, 19, 188, 1883, 18825, 188244, 1882429, 18824297, 188242957, 1882429628, ...
The asymptotic density of this sequence is 1 - Product_{p prime} 1 - (p - 1)/(p*(p^p - 1)) = 0.18824296270011399086...

Examples

			4 = 2^2 is a term since 2 divides 2.
8 = 2^3 is not a term since 2 does not divide 3.
		

Crossrefs

Subsequence of A013929.
Cf. A072873, A369070 (characteristic function).

Programs

  • Mathematica
    q[n_] := AnyTrue[FactorInteger[n], Divisible[Last[#], First[#]] &]; Select[Range[2, 300], q]

Extensions

Wrong term 1 removed by Amiram Eldar, Jan 16 2024

A098502 a(n) = 16*n - 4.

Original entry on oeis.org

12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 380, 396, 412, 428, 444, 460, 476, 492, 508, 524, 540, 556, 572, 588, 604, 620, 636, 652, 668, 684, 700, 716, 732, 748, 764, 780, 796, 812, 828, 844
Offset: 1

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Comments

For n > 3, the number of squares on the infinite 4-column chessboard at <= n knight moves from any fixed start point.

Crossrefs

Programs

Formula

G.f.: 4*x*(3+x)/(1-x)^2. - Colin Barker, Jan 09 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3 - 2*sqrt(2)))/(16*sqrt(2)). - Amiram Eldar, Sep 01 2024
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: 4*(exp(x)*(4*x - 1) + 1).
a(n) = 2*a(n-1) - a(n-2) for n > 2.
a(n) = 4*A004767(n-1) = 2*A017137(n-1) = A017113(2*n-1). (End)

A288571 a(n) = Sum_{d|n} (-1)^(n/d+1)*tau(d), where tau = number of divisors (A000005).

Original entry on oeis.org

1, 1, 3, 0, 3, 3, 3, -2, 6, 3, 3, 0, 3, 3, 9, -5, 3, 6, 3, 0, 9, 3, 3, -6, 6, 3, 10, 0, 3, 9, 3, -9, 9, 3, 9, 0, 3, 3, 9, -6, 3, 9, 3, 0, 18, 3, 3, -15, 6, 6, 9, 0, 3, 10, 9, -6, 9, 3, 3, 0, 3, 3, 18, -14, 9, 9, 3, 0, 9, 9, 3, -12, 3, 3, 18, 0, 9, 9, 3, -15, 15, 3, 3, 0, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 23 2018

Keywords

Comments

Dirichlet convolution of A048272 and A000012. - Vaclav Kotesovec, Jan 13 2024

Crossrefs

Cf. A000005, A001620, A007425, A017113 (positions of 0's), A048272, A288417, A317531.

Programs

  • Maple
    with(numtheory): seq(add((-1)^(n/a+1)*tau(a),a=divisors(n)),n=1..85); # Paolo P. Lava, Aug 24 2018
  • Mathematica
    Table[Sum[(-1)^(n/d + 1) DivisorSigma[0, d], {d, Divisors[n]}], {n, 85}]
    nmax = 85; Rest[CoefficientList[Series[Sum[DivisorSigma[0, k] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 85; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^(DivisorSigma[0, k]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := If[p == 2, (e + 1)*(2 - e)/2, (e + 1)*(e + 2)/2]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1)*numdiv(d)); \\ Michel Marcus, Aug 24 2018

Formula

G.f.: Sum_{k>=1} tau(k)*x^k/(1 + x^k).
L.g.f.: log(Product_{k>=1} (1 + x^k)^(tau(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
Multiplicative with a(2^e) = (e+1)*(2-e)/2, and a(p^e) = (e+1)*(e+2)/2 for an odd prime p. - Amiram Eldar, Oct 25 2020
From Amiram Eldar, Sep 14 2023: (Start)
Dirichlet g.f.: (1- 1/2^(s-1)) * zeta(s)^3.
Sum_{k=1..n} a(k) ~ log(2) * n * (log(n) + 3*gamma - 1 - log(2)/2), where gamma is Euler's constant (A001620). (End)

A086570 Expansion of (1 + 3x + 5x^2 + 7x^3 + ...) / (1 - 2x + 3x^2 - 4x^3 + ...).

Original entry on oeis.org

1, 5, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404, 412, 420, 428
Offset: 0

Views

Author

Gary W. Adamson, Jul 22 2003

Keywords

Comments

Row sums of number triangle A113128. - Paul Barry, Oct 14 2005
The Engel expansion of 1 + exp(1/8)*sqrt(2*Pi)*erf(1/(2*sqrt(2)))/5 = 1.2175306077808... - Benedict W. J. Irwin, Dec 16 2016

Examples

			a(6) = 44 = 8 + a(5) = 8 + 36.
		

Crossrefs

Programs

Formula

a(0) = 1, a(1) = 5, a(2) = 12; then a(n+1) = a(n) + 8, n > 2.
From Paul Barry, Oct 14 2005: (Start)
G.f.: (1+x)^3/(1-x)^2;
a(n) = 8n - 4 + 4*C(0, n) + C(1, n);
a(n) = C(n+1, n) + 3*C(n, n-1) + 3*C(n-1, n-2) + C(n-2, n-3). (End)
a(n) = A017113(n-1), n > 1. - R. J. Mathar, Sep 12 2008

A188134 a(4*n) = n, a(1+2*n) = 4+8*n, a(2+4*n) = 2+4*n.

Original entry on oeis.org

0, 4, 2, 12, 1, 20, 6, 28, 2, 36, 10, 44, 3, 52, 14, 60, 4, 68, 18, 76, 5, 84, 22, 92, 6, 100, 26, 108, 7, 116, 30, 124, 8, 132, 34, 140, 9, 148, 38, 156, 10, 164, 42, 172, 11, 180, 46, 188, 12, 196, 50, 204, 13, 212, 54, 220, 14, 228, 58, 236, 15, 244, 62
Offset: 0

Views

Author

Paul Curtz, Mar 21 2011

Keywords

Crossrefs

Programs

  • Magma
    [(64-3*(1+(-1)^n)*(9+(-1)^(n div 2)))*n/16 : n in [0..80]]; // Wesley Ivan Hurt, Jul 06 2016
    
  • Maple
    A188134:=n->8*n/(11 + 9*cos(Pi*n) + 12*cos(n*Pi/2)): seq(A188134(n), n=0..100); # Wesley Ivan Hurt, Jul 06 2016
  • Mathematica
    Table[8 n/(11 + 9 Cos[Pi*n] + 12 Cos[n*Pi/2]), {n, 0, 80}] (* Wesley Ivan Hurt, Jul 06 2016 *)
    CoefficientList[Series[x*(4+2*x+12*x^2+x^3+12*x^4+2*x^5+4*x^6)/(1-x^4)^2, {x, 0, 50}], x] (* G. C. Greubel, Sep 20 2018 *)
    LinearRecurrence[{0,0,0,2,0,0,0,-1},{0,4,2,12,1,20,6,28},70] (* Harvey P. Dale, Aug 14 2019 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(4+2*x+12*x^2+x^3+12*x^4+ 2*x^5 +4*x^6)/(1-x^4)^2)) \\ G. C. Greubel, Sep 20 2018

Formula

a(n) = 2*a(n-4) - a(n-8) for n>7.
a(n) = A176895(n) * A060819(n).
a(n) = (4*A061037(n+2))/(n+4).
a(n) = 4*n / A146160(n).
a(2*n) = A064680(n).
a(1+2*n) = A017113(n).
a(4*n) = a(-4+4*n) + 1.
a(1+4*n) = a(-3+4*n) + 16.
a(2+4*n) = a(-2+4*n) + 4.
a(3+4*n) = a(-1+4*n) + 16. See A177499.
From Bruno Berselli, Mar 22 2011: (Start)
G.f.: x*(4+2*x+12*x^2+x^3+12*x^4+2*x^5+4*x^6)/(1-x^4)^2.
a(n) = (64-3*(1+(-1)^n)*(9+i^n))*n/16 with i=sqrt(-1).
a(n)/a(n-4) = n/(n-4) for n>4. (End)
a(n) = 8*n/(11 + 9*cos(Pi*n) + 12*cos(n*Pi/2)). - Wesley Ivan Hurt, Jul 06 2016
a(n) = lcm(4,n)/gcd(4,n). - R. J. Mathar, Feb 12 2019
Sum_{k=1..n} a(k) ~ (37/32)*n^2. - Amiram Eldar, Oct 07 2023

A209675 Radon function at even positions: a(n) = A003484(2*n).

Original entry on oeis.org

2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 8, 2, 4, 2, 10, 2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 8, 2, 4, 2, 12, 2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 8, 2, 4, 2, 10, 2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 8, 2, 4, 2, 16, 2, 4, 2, 8, 2, 4, 2, 9, 2, 4, 2, 8, 2, 4, 2, 10, 2, 4, 2, 8, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 11 2012

Keywords

Crossrefs

Programs

  • Haskell
    a209675 = a003484 . (* 2)
  • Mathematica
    a[n_] := 8*Floor[(e = IntegerExponent[n, 2] + 1)/4] + 2^Mod[e, 4]; Array[a, 100] (* Amiram Eldar, Nov 29 2022 *)

Formula

a(n) = A053381(n-1) + 1.
a(n) > 1.
a(A005408(n)) = 2; a(A016825(n)) = 4; a(A017113(n)) = 8; a(A051062(n)) = 9.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4/3. - Amiram Eldar, Nov 29 2022
Previous Showing 21-30 of 65 results. Next