cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A247678 Odd composite numbers congruent to 4 modulo 9.

Original entry on oeis.org

49, 85, 121, 175, 247, 265, 301, 319, 355, 391, 427, 445, 481, 517, 535, 553, 589, 625, 679, 697, 715, 805, 841, 895, 913, 931, 949, 985, 1003, 1057, 1075, 1111, 1147, 1165, 1183, 1219, 1255, 1273, 1309, 1345, 1363, 1417, 1435, 1507, 1525, 1561, 1615, 1633
Offset: 1

Views

Author

Odimar Fabeny, Sep 22 2014

Keywords

Crossrefs

Cf. A017209 (9n + 4, supersequence of this sequence), A247676, A247679, A247681, A247682, A247683.

Programs

  • Mathematica
    Select[18Range[125] + 13, Not[PrimeQ[#]] &] (* Alonso del Arte, Sep 24 2014 *)
    Select[Range[13,1700,18],CompositeQ] (* Harvey P. Dale, Aug 21 2024 *)
  • PARI
    lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && ((n % 9) == 4), print1(n, ", ")); ); } \\ Michel Marcus, Sep 22 2014

A154266 a(n) = 27*n + 12.

Original entry on oeis.org

12, 39, 66, 93, 120, 147, 174, 201, 228, 255, 282, 309, 336, 363, 390, 417, 444, 471, 498, 525, 552, 579, 606, 633, 660, 687, 714, 741, 768, 795, 822, 849, 876, 903, 930, 957, 984, 1011, 1038, 1065, 1092, 1119, 1146, 1173, 1200, 1227, 1254, 1281, 1308, 1335
Offset: 0

Views

Author

Vincenzo Librandi, Jan 06 2009

Keywords

Comments

The identity (81*n^2 + 72*n + 17)^2 - (9*n^2 + 8*n + 2)*(27*n + 12)^2 = 1 can be written as A154295(n+1)^2 - A154262(n+1)*a(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012

Crossrefs

Programs

Formula

From R. J. Mathar, Jan 05 2011: (Start)
G.f.: 3*(4 + 5*x)/(1-x)^2.
a(n) = 3*A017209(n). (End)
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 02 2012
E.g.f.: (27*x + 12)*exp(x). - G. C. Greubel, Sep 08 2016
a(n) = A017197(3*n+1) = A008585(9*n+4). - Elmo R. Oliveira, Apr 12 2025

Extensions

119 replaced by 1119 - R. J. Mathar, Jan 07 2009

A155551 Triangle read by rows where T(m,n)=2*m*n + m + n - 9.

Original entry on oeis.org

-5, -2, 3, 1, 8, 15, 4, 13, 22, 31, 7, 18, 29, 40, 51, 10, 23, 36, 49, 62, 75, 13, 28, 43, 58, 73, 88, 103, 16, 33, 50, 67, 84, 101, 118, 135, 19, 38, 57, 76, 95, 114, 133, 152, 171, 22, 43, 64, 85, 106, 127, 148, 169, 190, 211, 25, 48, 71, 94, 117, 140, 163, 186, 209
Offset: 1

Views

Author

Vincenzo Librandi, Jan 24 2009

Keywords

Comments

The numbers 2*T(m,n)+19 =(2*n+1)*(2*m+1) are not prime.
First column: A016777, second column: A016885, third column: A016993, fourth column: A017209. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
-5;
-2, 3;
1,  8,  15;
4,  13, 22, 31;
7,  18, 29, 40, 51;
10, 23, 36, 49, 62,  75;
13, 28, 43, 58, 73,  88,  103;
16, 33, 50, 67, 84,  101, 118, 135;
19, 38, 57, 76, 95,  114, 133, 152, 171;
22, 43, 64, 85, 106, 127, 148, 169, 190, 211; etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k - 9: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k - 9; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)

A163674 Triangle T(n,m) = 2*m*n + m + n + 9 read by rows.

Original entry on oeis.org

13, 16, 21, 19, 26, 33, 22, 31, 40, 49, 25, 36, 47, 58, 69, 28, 41, 54, 67, 80, 93, 31, 46, 61, 76, 91, 106, 121, 34, 51, 68, 85, 102, 119, 136, 153, 37, 56, 75, 94, 113, 132, 151, 170, 189, 40, 61, 82, 103, 124, 145, 166, 187, 208, 229, 43, 66, 89, 112, 135, 158, 181
Offset: 1

Views

Author

Vincenzo Librandi, Aug 03 2009

Keywords

Comments

2*T(m,n) - 17 =(2*n+1)*(2*m+1) and 2*T(n,n) - 17 is a square. Also:
first column: A112414;
second column: A016861;
third column: A017041;
fourth column: A017209. [Vincenzo Librandi, Nov 20 2012]

Examples

			Triangle begins:
  13;
  16,  21;
  19,  26,  33;
  22,  31,  40,  49;
  25,  36,  47,  58,  69;
  28,  41,  54,  67,  80,  93;
  31,  46,  61,  76,  91, 106, 121;
  34,  51,  68,  85, 102, 119, 136, 153;
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k + 9: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
    
  • Mathematica
    t[n_,k_]:=2 n*k + n + k + 9; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
  • PARI
    for(n=1,10, for(m=1,n, print1(2*m*n + m + n + 9, ", "))) \\ G. C. Greubel, Aug 02 2017

Formula

T(n,m) = A163657(n,m) + 1.

Extensions

Edited by R. J. Mathar, Oct 12 2009

A155156 Triangle T(n, k) = 4*n*k + 2*n + 2*k, read by rows.

Original entry on oeis.org

8, 14, 24, 20, 34, 48, 26, 44, 62, 80, 32, 54, 76, 98, 120, 38, 64, 90, 116, 142, 168, 44, 74, 104, 134, 164, 194, 224, 50, 84, 118, 152, 186, 220, 254, 288, 56, 94, 132, 170, 208, 246, 284, 322, 360, 62, 104, 146, 188, 230, 272, 314, 356, 398, 440, 68, 114, 160, 206, 252, 298, 344, 390, 436, 482, 528
Offset: 1

Views

Author

Vincenzo Librandi, Jan 21 2009

Keywords

Comments

First column: A016933, second column: A017317, third column: A063151, fourth column: 2*A017209. - Vincenzo Librandi, Nov 21 2012

Examples

			Triangle begins:
   8;
  14,  24;
  20,  34,  48;
  26,  44,  62,  80;
  32,  54,  76,  98, 120;
  38,  64,  90, 116, 142, 168;
  44,  74, 104, 134, 164, 194, 224;
  50,  84, 118, 152, 186, 220, 254, 288;
  56,  94, 132, 170, 208, 246, 284, 322, 360;
  62, 104, 146, 188, 230, 272, 314, 356, 398, 440;
		

Crossrefs

Programs

  • Magma
    [4*n*k + 2*n + 2*k : k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Maple
    seq(seq( 2*(2*n*k +n+k), k=1..n), n=1..15); # G. C. Greubel, Mar 20 2021
  • Mathematica
    T[n_,k_]:=4*n*k +2*n +2*k; Table[T[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • Sage
    flatten([[2*(2*n*k +n+k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 20 2021

Formula

T(n, k) = 2*A083487(n, k). - R. J. Mathar, Jan 05 2011
Sum_{k=0..n} T(n,k) = n*(2*n^2 + 5*n + 1) = 2*A162254(n) = A163832(n). - G. C. Greubel, Mar 20 2021

Extensions

Edited by Robert Hochberg, Jun 21 2010

A276819 a(n) = (9*n^2 - n)/2 + 1.

Original entry on oeis.org

1, 5, 18, 40, 71, 111, 160, 218, 285, 361, 446, 540, 643, 755, 876, 1006, 1145, 1293, 1450, 1616, 1791, 1975, 2168, 2370, 2581, 2801, 3030, 3268, 3515, 3771, 4036, 4310, 4593, 4885, 5186, 5496, 5815, 6143, 6480, 6826, 7181, 7545, 7918, 8300, 8691, 9091, 9500, 9918, 10345, 10781, 11226, 11680, 12143, 12615
Offset: 0

Views

Author

Yuriy Sibirmovsky, Sep 18 2016

Keywords

Comments

Diagonal of triangular spiral in A051682. The other 5 diagonals are given by A140064, A117625, A081267, A064225, A006137. See the link as well.
First differences are given by A017209.
72*a(n) - 71 is a perfect square. - Klaus Purath, Jan 14 2022

Crossrefs

Programs

  • Mathematica
    Table[(9*n^2-n)/2+1, {n,0,100}]
  • PARI
    Vec((1+2*x+6*x^2)/(1-x)^3 + O(x^60)) \\ Colin Barker, Sep 18 2016
    
  • PARI
    a(n) = (9*n^2 - n)/2 + 1; \\ Altug Alkan, Sep 18 2016

Formula

a(n) = (9*n^2 - n)/2 + 1.
a(n) = a(n-1) + 9*n - 5 with a(0) = 1.
From Colin Barker, Sep 18 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: (1 + 2*x + 6*x^2)/(1 - x)^3. (End)
From Klaus Purath, Jan 14 2022: (Start)
a(n) = A006137(n) - n.
A003215(a(n)) - A003215(a(n)-3) = A002378(9*n-1). (End)
E.g.f.: exp(x)*(2 + 8*x + 9*x^2)/2. - Stefano Spezia, Dec 25 2022

A162245 Triangle T(n,m) = 6*m*n + 3*m + 3*n + 1 read by rows.

Original entry on oeis.org

13, 22, 37, 31, 52, 73, 40, 67, 94, 121, 49, 82, 115, 148, 181, 58, 97, 136, 175, 214, 253, 67, 112, 157, 202, 247, 292, 337, 76, 127, 178, 229, 280, 331, 382, 433, 85, 142, 199, 256, 313, 370, 427, 484, 541, 94, 157, 220, 283, 346, 409, 472, 535, 598, 661
Offset: 1

Views

Author

Vincenzo Librandi, Jun 28 2009

Keywords

Comments

If h belongs to the main diagonal of the triangle then 6*h+3 is a square since T(n,n) = (3/2)*(2*n+1)^2-1/2 and 6*T(n,n)+3 = 9*(2*n+1)^2. Also, the first column is A017209 (after 4). - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
13;
22, 37;
31, 52,  73;
40, 67,  94,  121;
49, 82,  115, 148, 181;
58, 97,  136, 175, 214, 253;
67, 112, 157, 202, 247, 292, 337;
76, 127, 178, 229, 280, 331, 382, 433; etc.
		

Crossrefs

Programs

  • Magma
    [6*n*k + 3*n + 3*k + 1:  k in [1..n],  n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    Flatten@Table[6*m*n + 3*m + 3*n + 1, {n, 20}, {m, n}] (* Vincenzo Librandi, Mar 03 2012 *)

Formula

Row sums: Sum_{m=1..n} T(n,m) = n*(5+6*n^2+15*n)/2. - R. J. Mathar, Jul 26 2009
T(n,m) = 3*A083487(n,m)+1. - R. J. Mathar, Jul 26 2009
T(k,k) = A003154(k+1) and T(k+1,k) = A163433(k+2). - Avi Friedlich, May 22 2015

Extensions

Edited by R. J. Mathar, Jul 26 2009

A177073 a(n) = (9*n+4)*(9*n+5).

Original entry on oeis.org

20, 182, 506, 992, 1640, 2450, 3422, 4556, 5852, 7310, 8930, 10712, 12656, 14762, 17030, 19460, 22052, 24806, 27722, 30800, 34040, 37442, 41006, 44732, 48620, 52670, 56882, 61256, 65792, 70490, 75350, 80372, 85556, 90902, 96410, 102080, 107912, 113906, 120062
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2010

Keywords

Comments

Cf. comment of Reinhard Zumkeller in A177059: in general, (h*n+h-k)*(h*n+k) = h^2*A002061(n+1) + (h-k)*k - h^2; therefore a(n) = 81*A002061(n+1) - 61. - Bruno Berselli, Aug 24 2010

Crossrefs

Programs

  • Magma
    [(9*n+4)*(9*n+5): n in [0..50]]; // Vincenzo Librandi, Apr 08 2013
    
  • Mathematica
    f[n_] := Module[{c = 9n}, (c+4)(c+5)]; Array[f, 40, 0] (* or *) LinearRecurrence[{3, -3, 1}, {20, 182, 506}, 40] (* Harvey P. Dale, Jun 24 2011 *)
  • PARI
    a(n)=(9*n+4)*(9*n+5) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 162*n + a(n-1) with n > 0, a(0)=20.
From Harvey P. Dale, Jun 24 2011: (Start)
a(0)=20, a(1)=182, a(2)=506, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -2*(x*(10*x+61)+10)/(x-1)^3. (End)
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017209(n)*A017221(n).
Sum_{n>=0} 1/a(n) = tan(Pi/18)*Pi/9.
Product_{n>=0} (1 - 1/a(n)) = sec(Pi/18)*cos(sqrt(5)*Pi/18).
Product_{n>=0} (1 + 1/a(n)) = sec(Pi/18)*cosh(sqrt(3)*Pi/18). (End)
E.g.f.: exp(x)*(20 + 81*x*(2 + x)). - Elmo R. Oliveira, Oct 18 2024

Extensions

Edited by N. J. A. Sloane, Jun 22 2010

A304503 a(n) = 3*(n+1)*(9*n+4).

Original entry on oeis.org

12, 78, 198, 372, 600, 882, 1218, 1608, 2052, 2550, 3102, 3708, 4368, 5082, 5850, 6672, 7548, 8478, 9462, 10500, 11592, 12738, 13938, 15192, 16500, 17862, 19278, 20748, 22272, 23850, 25482, 27168, 28908, 30702, 32550, 34452, 36408, 38418, 40482, 42600, 44772
Offset: 0

Views

Author

Emeric Deutsch, May 13 2018

Keywords

Comments

The first Zagreb index of the single-defect 3-gonal nanocone CNC(3,n) (see definition in the Doslic et al. reference, p. 27).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of CNC(3,n) is M(CNC(3,n);x,y) = 3*x^2*y^2 + 6*n*x^2*y^3 + 3*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n);x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
12*a(n) + 25 is a square. - Bruno Berselli, May 14 2018

Crossrefs

Programs

  • Maple
    seq((3*(n+1))*(9*n+4), n = 0 .. 40);
  • PARI
    Vec(6*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 6*(2 + 7*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 3*exp(x)*(4 + 22*x + 9*x^2).
a(n) = 6*A062708(n+1) = A017209(n)*A008585(n+1). (End)

A304505 a(n) = 4*(n+1)*(9*n+4).

Original entry on oeis.org

16, 104, 264, 496, 800, 1176, 1624, 2144, 2736, 3400, 4136, 4944, 5824, 6776, 7800, 8896, 10064, 11304, 12616, 14000, 15456, 16984, 18584, 20256, 22000, 23816, 25704, 27664, 29696, 31800, 33976, 36224, 38544, 40936, 43400, 45936, 48544, 51224, 53976, 56800, 59696
Offset: 0

Views

Author

Emeric Deutsch, May 14 2018

Keywords

Comments

a(n) is the first Zagreb index of the single-defect 4-gonal nanocone CNC(4,n) (see definition in the Doslic et al. reference, p. 27).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of CNC(4,n) is M(CNC(4,n); x,y) = 4*x^2*y^2 + 8*n*x^2*y^3 + 2*n*(3*n+1)*x^3*y^3.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
9*a(n) + 25 is a square. - Bruno Berselli, May 14 2018

Crossrefs

Programs

  • GAP
    List([0..50],n->4*(n+1)*(9*n+4)); # Muniru A Asiru, May 14 2018
    
  • Maple
    seq((4*(n+1))*(9*n+4), n = 0 .. 40);
  • PARI
    a(n) = 4*(n+1)*(9*n+4); \\ Altug Alkan, May 14 2018
    
  • PARI
    Vec(8*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 8*(2 + 7*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 4*exp(x)*(4 + 22*x + 9*x^2).
a(n) = 8*A062708(n+1) = A017209(n)*A008586(n+1). (End)
Previous Showing 11-20 of 29 results. Next