cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 133 results. Next

A102430 Triangle read by rows where T(n,k) is the number of integer partitions of n > 1 into powers of k > 1.

Original entry on oeis.org

2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 6, 3, 2, 2, 2, 6, 3, 2, 2, 2, 2, 10, 3, 3, 2, 2, 2, 2, 10, 5, 3, 2, 2, 2, 2, 2, 14, 5, 3, 3, 2, 2, 2, 2, 2, 14, 5, 3, 3, 2, 2, 2, 2, 2, 2, 20, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 20, 7, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2, 26, 7, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 2

Views

Author

Marc LeBrun, Jan 08 2005

Keywords

Comments

All entries above main diagonal are = 1.

Examples

			The T(9,3)=5 partitions of 9 into powers of 3: 111111111, 1111113, 11133, 333, 9.
From _Gus Wiseman_, Jun 07 2019: (Start)
Triangle begins:
   2
   2  2
   4  2  2
   4  2  2  2
   6  3  2  2  2
   6  3  2  2  2  2
  10  3  3  2  2  2  2
  10  5  3  2  2  2  2  2
  14  5  3  3  2  2  2  2  2
  14  5  3  3  2  2  2  2  2  2
  20  7  4  3  3  2  2  2  2  2  2
  20  7  4  3  3  2  2  2  2  2  2  2
  26  7  4  3  3  3  2  2  2  2  2  2  2
  26  9  4  4  3  3  2  2  2  2  2  2  2  2
  36  9  6  4  3  3  3  2  2  2  2  2  2  2  2
  36  9  6  4  3  3  3  2  2  2  2  2  2  2  2  2
  46 12  6  4  4  3  3  3  2  2  2  2  2  2  2  2  2
Row n = 8 counts the following partitions:
  8          3311       44         5111       611        71         8
  44         311111     41111      11111111   11111111   11111111   11111111
  422        11111111   11111111
  2222
  4211
  22211
  41111
  221111
  2111111
  11111111
(End)
		

Crossrefs

Same as A308558 except for the k = 1 column.
Row sums are A102431.
First column (k = 2) is A018819.
Second column (k = 3) is A062051.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<0, 0,
          b(n, i-1, k)+(p-> `if`(p>n, 0, b(n-p, i, k)))(k^i)))
        end:
    T:= (n, k)-> b(n, ilog[k](n), k):
    seq(seq(T(n, k), k=2..n), n=2..20);  # Alois P. Heinz, Oct 12 2019
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@(IntegerQ[Log[k,#]]&/@#)&]],{n,2,10},{k,2,n}] (* Gus Wiseman, Jun 07 2019 *)

Formula

T(1, k) = 1, T(n, 1) = choose(2n-1, n), T(n>1, k>1) = T(n-1, k) + (T(n/k, k) if k divides n, else 0)

Extensions

Corrected and rewritten by Gus Wiseman, Jun 07 2019

A351008 Alternately strict partitions. Number of even-length integer partitions y of n such that y_i > y_{i+1} for all odd i.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 19, 23, 28, 34, 41, 50, 60, 71, 85, 102, 120, 142, 168, 197, 231, 271, 316, 369, 429, 497, 577, 668, 770, 888, 1023, 1175, 1348, 1545, 1767, 2020, 2306, 2626, 2990, 3401, 3860, 4379, 4963, 5616, 6350, 7173, 8093
Offset: 0

Views

Author

Gus Wiseman, Jan 31 2022

Keywords

Comments

Write the series in the g.f. given below as Sum_{k >= 0} q^(1 + 3 + 5 + ... + 2*k-1 + 2*k)/Product_{i = 1..2*k} 1 - q^i. Since 1/Product_{i = 1..2*k} 1 - q^i is the g.f. for partitions with parts <= 2*k, we see that the k-th summand of the series is the g.f. for partitions with largest part 2*k in which every odd number less than 2*k appears at least once as a part. The partitions of this type are conjugate to (and hence equinumerous with) the partitions (y_1, y_2, ..., y_{2*k}) of even length 2*k having strict decrease y_i > y_(i+1) for all odd i < 2*k. - Peter Bala, Jan 02 2024

Examples

			The a(3) = 1 through a(13) = 12 partitions (A..C = 10..12):
  21   31   32   42   43   53     54     64     65     75     76
            41   51   52   62     63     73     74     84     85
                      61   71     72     82     83     93     94
                           3221   81     91     92     A2     A3
                                  4221   4321   A1     B1     B2
                                         5221   4331   4332   C1
                                                5321   5331   5332
                                                6221   5421   5431
                                                       6321   6331
                                                       7221   6421
                                                              7321
                                                              8221
a(10) = 6: the six partitions 64, 73, 82, 91, 4321 and 5221 listed above have conjugate partitions 222211, 2221111, 22111111, 211111111, 4321 and 43111, These are the partitions of 10 with largest part L even and such that every odd number less than L appears at least once as a part. - _Peter Bala_, Jan 02 2024
		

Crossrefs

The version for equal instead of unequal is A035363.
The alternately equal and unequal version is A035457, any length A351005.
This is the even-length case of A122129, opposite A122135.
The odd-length version appears to be A122130.
The alternately unequal and equal version is A351007, any length A351006.

Programs

  • Maple
    series(add(q^(n*(n+2))/mul(1 - q^k, k = 1..2*n), n = 0..10), q, 141):
    seq(coeftayl(%, q = 0, n), n = 0..140); # Peter Bala, Jan 03 2025
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,30}]

Formula

Conjecture: a(n+1) = A122129(n+1) - A122130(n). - Gus Wiseman, Feb 21 2022
G.f.: Sum_{n >= 0} q^(n*(n+2))/Product_{k = 1..2*n} 1 - q^k = 1 + q^3 + q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 4*q^8 + 5*q^9 + 6*q^10 + .... - Peter Bala, Jan 02 2024

A179051 Number of partitions of n into powers of 10 (cf. A011557).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 27 2010

Keywords

Comments

A179052 and A008592 give record values and where they occur.

Examples

			a(19) = #{10 + 9x1, 19x1} = 2;
a(20) = #{10 + 10, 10 + 10x1, 20x1} = 3;
a(21) = #{10 + 10 + 1, 10 + 11x1, 21x1} = 3.
		

Crossrefs

Number of partitions of n into powers of b: A018819 (b=2), A062051 (b=3).

Programs

  • Haskell
    a179051 = p 1 where
       p _ 0 = 1
       p k m = if m < k then 0 else p k (m - k) + p (k * 10) m
    -- Reinhard Zumkeller, Feb 05 2012
  • Mathematica
    terms = 10001;
    CoefficientList[Product[1/(1 - x^(10^k)) + O[x]^terms,
         {k, 0, Log[10, terms] // Ceiling}], x]
    (* Jean-François Alcover, Dec 12 2021, after Ilya Gutkovskiy *)

Formula

a(n) = A133880(n) for n < 90; a(n) = A132272(n) for n < 100.
a(10^n) = A145513(n).
a(10*n) = A179052(n).
A179052(n) = a(A008592(n));
a(n) = p(n,1) where p(n,k) = if k<=n then p(10*[(n-k)/10],k)+p(n,10*k) else 0^n.
G.f.: Product_{k>=0} 1/(1 - x^(10^k)). - Ilya Gutkovskiy, Jul 26 2017

A350837 Number of integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 14, 18, 24, 31, 41, 53, 70, 87, 112, 140, 178, 221, 277, 344, 428, 526, 648, 792, 971, 1180, 1436, 1738, 2103, 2533, 3049, 3660, 4387, 5242, 6259, 7450, 8860, 10511, 12453, 14723, 17387, 20489, 24121, 28343, 33269, 38982, 45632, 53327
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2022

Keywords

Comments

The first of these partitions that is not double-free (see A323092 for definition) is (4,3,2).

Examples

			The a(1) = 1 through a(7) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (32)     (33)      (43)
                    (31)    (41)     (51)      (52)
                    (1111)  (311)    (222)     (61)
                            (11111)  (411)     (322)
                                     (3111)    (331)
                                     (111111)  (511)
                                               (4111)
                                               (31111)
                                               (1111111)
		

Crossrefs

The version with quotients >= 2 is A000929, sets A018819.
<= 2 is A342094, ranked by A342191.
< 2 is A342096, sets A045690, strict A342097.
> 2 is A342098, sets A040039.
The sets version (subsets of prescribed maximum) is A045691.
These partitions are ranked by A350838.
The strict case is A350840.
A version for differences is A350842, strict A350844.
The complement is counted by A350846, ranked by A350845.
A000041 = integer partitions.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free partitions, ranked by A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], FreeQ[Divide@@@Partition[#,2,1],2]&]],{n,0,15}]

A350838 Heinz numbers of partitions with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jan 18 2022

Keywords

Comments

Differs from A320340 in having 105: (4,3,2), 315: (4,3,2,2), 455: (6,4,3), etc.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with no adjacent prime indices of quotient 1/2.

Examples

			The terms and their prime indices begin:
      1: {}            19: {8}             38: {1,8}
      2: {1}           20: {1,1,3}         39: {2,6}
      3: {2}           22: {1,5}           40: {1,1,1,3}
      4: {1,1}         23: {9}             41: {13}
      5: {3}           25: {3,3}           43: {14}
      7: {4}           26: {1,6}           44: {1,1,5}
      8: {1,1,1}       27: {2,2,2}         45: {2,2,3}
      9: {2,2}         28: {1,1,4}         46: {1,9}
     10: {1,3}         29: {10}            47: {15}
     11: {5}           31: {11}            49: {4,4}
     13: {6}           32: {1,1,1,1,1}     50: {1,3,3}
     14: {1,4}         33: {2,5}           51: {2,7}
     15: {2,3}         34: {1,7}           52: {1,1,6}
     16: {1,1,1,1}     35: {3,4}           53: {16}
     17: {7}           37: {12}            55: {3,5}
		

Crossrefs

The version with quotients >= 2 is counted by A000929, sets A018819.
<= 2 is A342191, counted by A342094.
< 2 is counted by A342096, sets A045690.
> 2 is counted by A342098, sets A040039.
The sets version (subsets of prescribed maximum) is counted by A045691.
These partitions are counted by A350837.
The strict case is counted by A350840.
For differences instead of quotients we have A350842, strict A350844.
The complement is A350845, counted by A350846.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A003114 = strict partitions with no successions, ranked by A325160.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],And@@Table[FreeQ[Divide@@@Partition[primeptn[#],2,1],2],{i,2,PrimeOmega[#]}]&]

A351012 Number of even-length integer partitions y of n such that y_i = y_{i+1} for all even i.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 5, 6, 9, 10, 13, 16, 21, 24, 29, 35, 43, 50, 60, 70, 83, 97, 113, 132, 156, 178, 206, 239, 275, 316, 365, 416, 477, 545, 620, 706, 806, 912, 1034, 1173, 1326, 1496, 1691, 1902, 2141, 2410, 2704, 3034, 3406, 3808, 4261, 4765, 5317, 5932, 6617
Offset: 0

Views

Author

Gus Wiseman, Feb 03 2022

Keywords

Examples

			The a(2) = 1 through a(8) = 9 partitions:
  (11)  (21)  (22)    (32)    (33)      (43)      (44)
              (31)    (41)    (42)      (52)      (53)
              (1111)  (2111)  (51)      (61)      (62)
                              (3111)    (2221)    (71)
                              (111111)  (4111)    (2222)
                                        (211111)  (3221)
                                                  (5111)
                                                  (311111)
                                                  (11111111)
		

Crossrefs

The ordered version (compositions) is A027383(n-2).
For odd instead of even indices we have A035363, any length A351004.
The version for unequal parts appears to be A122134, any length A122135.
This is the even-length case of A351003.
Requiring inequalities at odd positions gives A351007, any length A351006.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]

A072721 Number of partitions of n into parts which are each positive powers of a single number >1 (which may vary between partitions).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 4, 1, 4, 2, 6, 1, 10, 1, 8, 4, 10, 1, 15, 1, 17, 5, 16, 1, 26, 2, 22, 5, 29, 1, 37, 1, 36, 7, 38, 4, 57, 1, 48, 9, 65, 1, 73, 1, 77, 13, 76, 1, 108, 2, 99, 11, 117, 1, 130, 5, 145, 14, 142, 1, 189, 1, 168, 19, 202, 5, 223, 1, 241, 17, 247, 1, 309, 1, 286, 24, 333, 4
Offset: 0

Views

Author

Henry Bottomley, Jul 05 2002

Keywords

Comments

First differs from A322968 at a(12) = 10, A322968(12) = 9.

Examples

			a(5)=1 since the only partition without 1 as a part is 5 (a power of 5). a(6)=4 since 6 can be written as 6 (powers of 6), 3+3 (powers of 3) and 4+2 and 2+2+2 (both powers of 2).
From _Gus Wiseman_, Jan 01 2019: (Start)
The a(2) = 1 through a(12) = 10 integer partitions (A = 10, B = 11, C = 12):
  (2)  (3)  (4)   (5)  (6)    (7)  (8)     (9)    (A)      (B)  (C)
            (22)       (33)        (44)    (333)  (55)          (66)
                       (42)        (422)          (82)          (84)
                       (222)       (2222)         (442)         (93)
                                                  (4222)        (444)
                                                  (22222)       (822)
                                                                (3333)
                                                                (4422)
                                                                (42222)
                                                                (222222)
(End)
Compare above to the example section of A379957. - _Antti Karttunen_, Jan 23 2025
		

Crossrefs

Programs

  • Mathematica
    radbase[n_]:=n^(1/GCD@@FactorInteger[n][[All,2]]);
    Table[Length[Select[IntegerPartitions[n],And[FreeQ[#,1],SameQ@@radbase/@#]&]],{n,30}] (* Gus Wiseman, Jan 01 2019 *)
  • PARI
    a(n)={if(n==0, 1, sumdiv(n, d, if(d>1&&!ispower(d), polcoef(1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)), n))))} \\ Andrew Howroyd, Jan 23 2025
    
  • PARI
    seq(n)={Vec(1 + sum(d=2, n, if(!ispower(d), -1 + 1/prod(j=1, logint(n, d), 1 - x^(d^j), Ser(1, x, 1+n)))))} \\ Andrew Howroyd, Jan 23 2025

Formula

a(n) = A072721(n)-A072721(n-1). a(p)=1 for p prime.
a(n) = A322900(n) - 1. - Gus Wiseman, Jan 01 2019
G.f.: 1 + Sum_{k>=2} -1 + 1/Product_{j>=1} (1 - x^(A175082(k)^j)). - Andrew Howroyd, Jan 23 2025
For n >= 1, a(n) >= A379957(n). - Antti Karttunen, Jan 23 2025

A102378 a(n) = a(n-1) + a([n/2]) + 1, a(1) = 1.

Original entry on oeis.org

1, 3, 5, 9, 13, 19, 25, 35, 45, 59, 73, 93, 113, 139, 165, 201, 237, 283, 329, 389, 449, 523, 597, 691, 785, 899, 1013, 1153, 1293, 1459, 1625, 1827, 2029, 2267, 2505, 2789, 3073, 3403, 3733, 4123, 4513, 4963, 5413, 5937, 6461, 7059, 7657, 8349
Offset: 1

Views

Author

Mitch Harris, Jan 05 2005

Keywords

Comments

From Gus Wiseman, Mar 23 2019: (Start)
The offset could safely be changed to zero by setting the boundary condition to a(0) = 0.
Also the number of integer partitions of 2n into powers of 2 with at least one part > 1. The Heinz numbers of these partitions are given by A324927. For example, the a(1) = 1 through a(5) = 13 integer partitions are:
(2) (4) (42) (8) (82)
(22) (222) (44) (442)
(211) (411) (422) (811)
(2211) (2222) (4222)
(21111) (4211) (4411)
(22211) (22222)
(41111) (42211)
(221111) (222211)
(2111111) (421111)
(2221111)
(4111111)
(22111111)
(211111111)
(End)

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[Max@@#>1,And@@IntegerQ/@Log[2,#]]&]],{n,0,30,2}] (* Gus Wiseman, Mar 23 2019 *)
  • Python
    from itertools import islice
    from collections import deque
    def A102378_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (1, 3)
        while True:
            a += b
            yield 2*a - 1
            aqueue.append(a)
            if f: b = aqueue.popleft()
            f = not f
    A102378_list = list(islice(A102378_gen(),40)) # Chai Wah Wu, Jun 08 2022

Formula

a(n) - a(n-1) = A018819(n+1)
G.f. A(x) satisfies (1-x)*A(x) = 2(1 + x)*B(x^2), where B(x) is the gf of A033485
a(n) = A000123(n) - 1. - Gus Wiseman, Mar 23 2019
G.f. A(x) satisfies: A(x) = (x + (1 - x^2) * A(x^2)) / (1 - x)^2. - Ilya Gutkovskiy, Aug 11 2021

A350840 Number of strict integer partitions of n with no adjacent parts of quotient 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 5, 6, 7, 8, 10, 13, 17, 19, 22, 25, 30, 35, 43, 52, 60, 70, 81, 93, 106, 122, 142, 166, 190, 216, 249, 287, 325, 371, 420, 479, 543, 617, 695, 784, 888, 1000, 1126, 1266, 1420, 1594, 1792, 2008, 2247, 2514, 2809, 3135, 3496, 3891, 4332
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2022

Keywords

Examples

			The a(1) = 1 through a(13) = 13 partitions (A..D = 10..13):
  1   2   3   4    5    6    7    8     9     A     B     C     D
              31   32   51   43   53    54    64    65    75    76
                   41        52   62    72    73    74    93    85
                             61   71    81    82    83    A2    94
                                  431   432   91    92    B1    A3
                                        531   532   A1    543   B2
                                              541   641   651   C1
                                                    731   732   643
                                                          741   652
                                                          831   751
                                                                832
                                                                931
                                                                5431
		

Crossrefs

The version for subsets of prescribed maximum is A045691.
The double-free case is A120641.
The non-strict case is A350837, ranked by A350838.
An additive version (differences) is A350844, non-strict A350842.
The non-strict complement is counted by A350846, ranked by A350845.
Versions for prescribed quotients:
= 2: A154402, sets A001511.
!= 2: A350840 (this sequence), sets A045691.
>= 2: A000929, sets A018819.
<= 2: A342095, non-strict A342094.
< 2: A342097, non-strict A342096, sets A045690.
> 2: A342098, sets A040039.
A000041 = integer partitions.
A000045 = sets containing n with all differences > 2.
A003114 = strict partitions with no successions, ranked by A325160.
A116931 = partitions with no successions, ranked by A319630.
A116932 = partitions with differences != 1 or 2, strict A025157.
A323092 = double-free integer partitions, ranked by A320340.
A350839 = partitions with gaps and conjugate gaps, ranked by A350841.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[#[[i-1]]/#[[i]]!=2,{i,2,Length[#]}]&]],{n,0,30}]

A005434 Number of distinct autocorrelations of binary words of length n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 13, 17, 21, 27, 30, 37, 47, 57, 62, 75, 87, 102, 116, 135, 155, 180, 194, 220, 254, 289, 312, 359, 392, 438, 479, 538, 595, 664, 701, 772, 863, 956, 1005, 1115, 1205, 1317, 1414, 1552, 1677, 1836, 1920, 2074, 2249, 2444
Offset: 1

Views

Author

Keywords

Comments

Conjecture: a(n + 1) - a(n) < a(n + 13) - a(n + 12) for all n >= 1. - Eric Rowland, Nov 24 2021
From Eric Rivals, Jul 11 2023: (Start)
log(a(n))/log^2(n) converges when n tends to infinity. This conjecture was first stated in (Guibas and Odlyzko, JCTA, 1981a). (Rivals et al. ICALP 2023) proves this conjecture and provides an improved upper bound for this ratio.
An autocorrelation is a binary encoding of the period set.
This sequence is also the number of autocorrelation for words over any finite alphabet whose cardinality is at least two. The autocorrelation is independent of the alphabet cardinality, provided the cardinality is at least two; see proofs in (Guibas and Odlyzko, JCTA, 1981a). (End)

Examples

			From _Eric Rowland_, Nov 22 2021: (Start)
For n = 5 there are a(5) = 6 distinct autocorrelations of length-5 binary words:
  00000 can overlap itself in 1, 2, 3, 4, or 5 letters. Its autocorrelation is 11111.
  00100 can overlap itself in 1, 2, or 5 letters. Its autocorrelation is 10011.
  01010 can overlap itself in 1, 3, or 5 letters. Its autocorrelation is 10101.
  00010 can overlap itself in 1 or 5 letters. Its autocorrelation is 10001.
  01001 can overlap itself in 2 or 5 letters. Its autocorrelation is 10010.
  00001 can only overlap itself in 5 letters. Its autocorrelation is 10000.
(End)
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley Publ., 2nd Ed., 1994. Section 8.4: Flipping Coins
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A018819 (related to a lower bound for autocorrelations), A045690 (the number of binary strings sharing the same autocorrelation).

Programs

  • Maple
    A005434 := proc( n :: posint )
        local    S := table();
        for local c in Iterator:-BinaryGrayCode( n ) do
            c := convert( c, 'list' );
            S[ [seq]( evalb( c[ 1 .. i + 1 ] = c[ n - i .. n ] ), i = 0 .. n - 1 ) ] := 0
        end do;
        numelems( S )
    end proc: # James McCarron, Jun 21 2017
  • Mathematica
    Table[Length[Union[Map[Flatten[Position[Table[Take[#,n-i]==Drop[#,i],{i,0,n-1}],True]-1]&,Tuples[{0,1},n]]]],{n,1,15}] (* Geoffrey Critzer, Nov 29 2013 *)

Extensions

More terms and additional references from torsten.sillke(at)lhsystems.com
Definition clarified by Eric Rowland, Nov 22 2021
Previous Showing 41-50 of 133 results. Next