cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A244647 Decimal expansion of the sum of the reciprocals of the decagonal numbers (A001107).

Original entry on oeis.org

1, 2, 1, 6, 7, 4, 5, 9, 5, 6, 1, 5, 8, 2, 4, 4, 1, 8, 2, 4, 9, 4, 3, 3, 9, 3, 5, 2, 0, 0, 4, 7, 6, 0, 3, 8, 2, 1, 0, 8, 3, 6, 1, 7, 0, 0, 9, 2, 2, 7, 7, 2, 8, 9, 0, 9, 4, 9, 8, 3, 7, 4, 4, 1, 5, 4, 4, 6, 9, 6, 3, 5, 6, 3, 5, 0, 7, 2, 9, 5, 4, 8, 7, 1, 0, 5, 3, 5, 7, 9, 7, 8, 8, 6, 7, 7, 1, 5, 3, 2, 2, 0, 5, 6, 9
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Comments

For the partial sums of the reciprocals of the (positive) decagonal numbers see A250551(n+1)/A294515(n), n >= 0. - Wolfdieter Lang, Nov 07 2017

Examples

			1.216745956158244182494339352004760382108361700922772890949837441544696356350....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Log[2] + Pi/6, 10, 111][[1]] (* or *)
    RealDigits[ Sum[1/(4n^2 - 3n), {n, 1 , Infinity}], 10, 111][[1]]
  • PARI
    log(2)+Pi/6 \\ Charles R Greathouse IV, Feb 08 2023

Formula

Sum_{n>0} 1/(4n^2 - 3n) = log(2) + Pi/6, (A002162 + A019673).

A244854 Decimal expansion of Pi^2/32.

Original entry on oeis.org

3, 0, 8, 4, 2, 5, 1, 3, 7, 5, 3, 4, 0, 4, 2, 4, 5, 6, 8, 3, 8, 5, 7, 7, 8, 4, 3, 7, 4, 6, 1, 2, 9, 7, 2, 2, 9, 7, 8, 5, 5, 3, 1, 0, 6, 4, 7, 6, 2, 7, 4, 7, 0, 7, 0, 7, 5, 4, 1, 7, 1, 6, 8, 0, 0, 6, 8, 7, 6, 4, 0, 0, 7, 0, 0, 6, 0, 0, 1, 6, 3, 8, 4, 3, 8, 0, 5
Offset: 0

Views

Author

Keywords

Comments

Probability that a point selected uniformly at random from the unit 4-cube is in the unit 4-sphere.
Let S(n) = 1 - 1/3 + 1/5 - ... + ((-1)^(n-1))/(2n-1). Then Sum{n >=1} ((-1)^(n-1))*S(n) /(2n+1) = Pi^2 /32. The convergence is very slow. - Michel Lagneau, Feb 27 2015

Examples

			Choose -1 <= w, x, y, z <= 1 uniformly at random. Then this constant is the probability that w^2 + x^2 + y^2 + z^2 <= 1.
		

Crossrefs

Cf. A003881 (2-dimensional analog), A019673 (3-dimensional analog).

Programs

  • Maple
    Digits:=100; evalf(Pi^2/32); # Wesley Ivan Hurt, Feb 27 2015
  • Mathematica
    RealDigits[Pi^2/32,10,120][[1]] (* Harvey P. Dale, Jul 13 2014 *)
  • PARI
    Pi^2/32

Formula

Equals Integral_{0..infinity} x^2*BesselK(0, x)^2 dx. - Jean-François Alcover, Apr 15 2015
Equals Integral_{x=0..1} arctan(x)/(1+x^2) dx. - Amiram Eldar, Aug 09 2020
Equals Integral_{x=0..1} Integral_{y=0..1} Integral_{z=0..1} (1 + x^2 + y^2 + z^2)^(-2). - Peter Luschny, Dec 10 2022

A381671 Decimal expansion of the isoperimetric quotient of a regular tetrahedron.

Original entry on oeis.org

3, 0, 2, 2, 9, 9, 8, 9, 4, 0, 3, 9, 0, 3, 6, 3, 0, 8, 4, 3, 2, 3, 4, 6, 3, 7, 6, 2, 7, 3, 6, 9, 2, 6, 2, 2, 0, 4, 7, 3, 4, 4, 3, 7, 4, 6, 8, 2, 1, 2, 3, 4, 2, 9, 2, 6, 1, 6, 4, 7, 4, 8, 9, 2, 3, 1, 3, 5, 3, 8, 6, 3, 5, 2, 1, 0, 5, 8, 9, 8, 0, 6, 1, 4, 0, 2, 0, 8, 3, 1
Offset: 0

Views

Author

Paolo Xausa, Mar 03 2025

Keywords

Comments

Polya (1954) defines the isoperimetric quotient of a solid as 36*Pi*V^2/(S^3), where V and S are the volume and surface area of the solid, respectively.
The isoperimetric quotient of a sphere is 1.

Examples

			0.30229989403903630843234637627369262204734437468212...
		

References

  • George Polya, Mathematics and Plausible Reasoning, Vol. 1: Induction and Analogy in Mathematics, Princeton University Press, Princeton, New Jersey, 1954. See pp. 188-189, exercise 43.

Crossrefs

Cf. A273633 (sphericity).
Cf. isoperimetric quotient of other Platonic solids: A019673 (cube), A073010 (octahedron), A374772 (dodecahedron), A381672 (icosahedron).

Programs

  • Mathematica
    First[RealDigits[Pi/(6*Sqrt[3]), 10, 100]]

Formula

Equals Pi/(6*sqrt(3)) = A019673/A002194.

A019691 Decimal expansion of Pi/24.

Original entry on oeis.org

1, 3, 0, 8, 9, 9, 6, 9, 3, 8, 9, 9, 5, 7, 4, 7, 1, 8, 2, 6, 9, 2, 7, 6, 8, 0, 7, 6, 3, 6, 6, 4, 5, 9, 5, 3, 5, 0, 8, 2, 1, 5, 3, 9, 1, 6, 4, 0, 6, 2, 9, 4, 0, 9, 2, 0, 7, 2, 8, 9, 3, 5, 8, 0, 1, 2, 8, 2, 5, 6, 8, 3, 5, 9, 5, 2, 5, 8, 7, 0, 8, 2, 7, 6, 1, 6, 8, 1, 1, 7, 7, 2, 2, 5, 8, 8, 2, 1, 1
Offset: 0

Views

Author

Keywords

Comments

With a different offset, also decimal expansion of 5*Pi/12, 25*Pi/6 or 125*Pi/3. - Michel Marcus, Sep 09 2013
Volume of a quarter sphere of diameter 1. - Omar E. Pol, Aug 19 2019

Examples

			0.13089969389957471826927680763664595350821539164062940920728935801282...
		

Crossrefs

Programs

Formula

Equals A019673/4 or A019675/3 or A019679/2. - Omar E. Pol, Aug 19 2019
Equals (1/10) * Sum_{k>=1} sin(k*Pi/6)/k. - Amiram Eldar, May 30 2021

A247446 Decimal expansion of Pi*sqrt(3)/16.

Original entry on oeis.org

3, 4, 0, 0, 8, 7, 3, 8, 0, 7, 9, 3, 9, 1, 5, 8, 4, 6, 9, 8, 6, 3, 8, 9, 6, 7, 3, 3, 0, 7, 9, 0, 4, 1, 9, 9, 8, 0, 3, 2, 6, 2, 4, 2, 1, 5, 1, 7, 3, 8, 8, 8, 5, 7, 9, 1, 9, 3, 5, 3, 4, 2, 5, 3, 8, 5, 2, 7, 3, 0, 9, 6, 4, 6, 1, 1, 9, 1, 3, 5, 3, 1, 9, 0, 7, 7, 3, 4, 3, 5, 2, 8, 9, 7, 6, 1, 2, 8, 1, 6, 6, 0, 5, 4, 1, 7
Offset: 0

Views

Author

Stanislav Sykora, Sep 29 2014

Keywords

Comments

The atomic packing factor (APF) of the diamond cubic crystal lattice and the smallest APF among all crystallographic lattices filled by spheres of the same diameter. The APF of the body-centered-cubic (bcc) lattice packed with spheres of the same diameter is twice this value (see Examples). For other crystal lattices, see the cross-refs.

Examples

			0.340087380793915846986389673307904199803262421517388857919353425385273...
APF of the bcc lattice packed with spheres of the same diameter:
0.680174761587831693972779346615808399606524843034777715838706850770546...
		

Crossrefs

Cf. APF's of other crystal lattices: A093825 (hcp,fcc), A019673 (simple cubic).

Programs

  • Mathematica
    RealDigits[Pi*Sqrt[3]/16,10,120][[1]] (* Vaclav Kotesovec, Oct 04 2014 *)
  • PARI
    Pi*sqrt(3)/16

A273634 Decimal expansion of (Pi/6)^(1/3), the sphericity of the cube.

Original entry on oeis.org

8, 0, 5, 9, 9, 5, 9, 7, 7, 0, 0, 8, 2, 3, 4, 8, 2, 0, 3, 5, 8, 4, 8, 3, 4, 2, 3, 3, 1, 9, 6, 4, 2, 4, 6, 9, 4, 7, 2, 3, 0, 7, 0, 3, 6, 1, 6, 1, 9, 3, 0, 7, 7, 7, 8, 4, 6, 1, 4, 6, 0, 3, 7, 6, 8, 9, 4, 7, 5, 4, 8, 2, 5, 2, 8, 5, 7, 2, 6, 3, 7, 1, 2, 3, 0, 7
Offset: 0

Views

Author

Felix Fröhlich, May 27 2016

Keywords

Examples

			0.80599597700823482035848342331964246947230703616193077784614603...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Surd[Pi/6, 3], 10, 120][[1]] (* Amiram Eldar, Jun 29 2023 *)
  • PARI
    default(realprecision, 50080); my(x=(Pi/6)^(1/3)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", "))

Formula

Equals cube root of A019673. - Michel Marcus, May 27 2016

A096615 Decimal expansion of 5 Pi^2/96.

Original entry on oeis.org

5, 1, 4, 0, 4, 1, 8, 9, 5, 8, 9, 0, 0, 7, 0, 7, 6, 1, 3, 9, 7, 6, 2, 9, 7, 3, 9, 5, 7, 6, 8, 8, 2, 8, 7, 1, 6, 3, 0, 9, 2, 1, 8, 4, 4, 1, 2, 7, 1, 2, 4, 5, 1, 1, 7, 9, 2, 3, 6, 1, 9, 4, 6, 6, 7, 8, 1, 2, 7, 3, 3, 4, 5, 0, 1, 0, 0, 0, 2, 7, 3, 0, 7, 3, 0, 0, 9, 0, 3, 1, 4, 4, 3, 6, 7, 4, 5, 9, 5, 4, 0, 7
Offset: 0

Views

Author

Eric W. Weisstein, Jun 30 2004

Keywords

Examples

			0.514041895...
		

References

  • Jonathan Borwein, David Bailey and Roland Girgensohn, Experimentation in Mathematics: Computational Paths to Discovery, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See pp. 17-20.

Crossrefs

Programs

  • Mathematica
    RealDigits[5 Pi^2/96, 10 , 100][[1]] (* Amiram Eldar, Aug 17 2020 *)

Formula

From Amiram Eldar, Aug 17 2020: (Start)
Equals Integral_{x=0..1} arctan(sqrt(x^2 + 2))/(sqrt(x^2 + 2) * (x^2 + 1)) dx (Ahmed, 2001; Borwein et al., 2004).
Equals (1/10) * Integral_{x=1..oo} log(x)/(x^5 + x) dx. (End)

A228272 Volume of sphere (rounded down) with the diameter equal to n.

Original entry on oeis.org

0, 4, 14, 33, 65, 113, 179, 268, 381, 523, 696, 904, 1150, 1436, 1767, 2144, 2572, 3053, 3591, 4188, 4849, 5575, 6370, 7238, 8181, 9202, 10305, 11494, 12770, 14137, 15598, 17157, 18816, 20579, 22449, 24429, 26521, 28730, 31059, 33510, 36086, 38792, 41629, 44602
Offset: 1

Views

Author

K. D. Bajpai, Aug 19 2013

Keywords

Examples

			a(6)=113 since volume is (Pi*n^3)/6 = Pi*6^3/6 = 113.0973355 and floor(113.0973355) = 113.
		

Crossrefs

Cf. A019673 (Pi/6).
Cf. A066645 (volume with radius n).
Cf. A228189 (similar sequence for right circular cone).

Programs

  • Maple
    a:= n-> floor((Pi*n^3)/6):
    seq(a(n),  n=1..100);

Formula

a(n) = floor((Pi*n^3)/6).

A338690 Inverse Moebius transform of A209615.

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3
Offset: 1

Views

Author

Jianing Song, Apr 24 2021

Keywords

Comments

Earliest occurrence of k is A018782(k).

Crossrefs

Cf. A209615, A035184 (a similar sequence), A018782, A002654, A019673.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 4] == 1, e + 1, (1 + (-1)^e)/2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 22 2022 *)
  • PARI
    a(n) = my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p%4==1, r*=e+1, if(e%2, return(0)))); r

Formula

Multiplicative with a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e)/2 if p = 2 or p == 3 (mod 4).
a(n) = A002654(n) = A035184(n) for odd n. a(2^e * m) = a(m) for even m, 0 for odd m.
Dirichlet g.f.: zeta(s)*beta(s)/(1 + 2^(-s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/6 = 0.523598... (A019673). - Amiram Eldar, Oct 22 2022

A384513 a(n) = number of iterations of z -> z^2 + c(n) with c(n) = 16/(n^2) + (1/n)*i + 3/8 + (sqrt(3)/8)*i to reach |z| > 2, starting with z = 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 28, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40
Offset: 1

Views

Author

Luke Bennet, May 31 2025

Keywords

Comments

a(n)/n seems to converge to Pi/6.
a(n) counts the escape time of points outside the Mandelbrot set that converge to the Mandelbrot set's 1/6 period bulb. This is a proven fact and was the motivation for creating the sequence.

Crossrefs

Programs

  • Python
    def a(n):
        dps = 1
        while True:
            mpmath.iv.dps = dps
            c = iv.mpc(iv.mpf(16) / n ** 2 + 0.375, iv.mpf(1) / n + iv.sqrt(3) / 8)
            z = iv.mpc(0, 0)
            counter = 0
            while (z.real**2 + z.imag**2).b <= 4:
                z = z ** 2 + c
                counter += 1
            if (z.real**2 + z.imag**2).a > 4:
                return counter
            dps *= 2
Previous Showing 11-20 of 28 results. Next