cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 75 results. Next

A258996 Permutation of the positive integers: this permutation transforms the enumeration system of positive irreducible fractions A002487/A002487' (Calkin-Wilf) into the enumeration system A162911/A162912 (Drib), and vice versa.

Original entry on oeis.org

1, 2, 3, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13, 26, 27, 24, 25, 30, 31, 28, 29, 18, 19, 16, 17, 22, 23, 20, 21, 42, 43, 40, 41, 46, 47, 44, 45, 34, 35, 32, 33, 38, 39, 36, 37, 58, 59, 56, 57, 62, 63, 60, 61, 50, 51, 48, 49, 54, 55, 52, 53
Offset: 1

Views

Author

Yosu Yurramendi, Jun 16 2015

Keywords

Comments

As A258746 the permutation is self-inverse. Except for fixed points 1, 2, 3 it consists completely of 2-cycles: (4,6), (5,7), (8,10), (9,11), (12,14), (13,15), (16,26), (17,27), ..., (21,31), ..., (32,42), ... . - Yosu Yurramendi, Mar 31 2016
When terms of sequence |n - a(n)|/2 (n > 3) are considered only once, and they are sorted in increasing order, A147992 is obtained. - Yosu Yurramendi, Apr 05 2016

Crossrefs

Cf. A092569, A117120, A258746. Similar R-programs: A332769, A284447.

Programs

  • R
    maxlevel <- 5 # by choice
    a <- 1
    for(m in 0:maxlevel) for(k in 0:(2^m-1)){
      a[2^(m+1) + 2*k    ] = 2*a[2^(m+1) - 1 - k]
      a[2^(m+1) + 2*k + 1] = 2*a[2^(m+1) - 1 - k] + 1}
    a
    
  • R
    # Given n, compute a(n) by taking into account the binary representation of n
    maxblock <- 7 # by choice
    a <- 1:3
    for(n in 4:2^maxblock){
      ones <- which(as.integer(intToBits(n)) == 1)
      nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
      anbit <- nbit
      anbit[seq(2, length(anbit) - 1, 2)] <- 1 - anbit[seq(2, length(anbit) - 1, 2)]
      a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
    }
    a
    # Yosu Yurramendi, Mar 30 2021

Formula

a(1) = 1, a(2) = 2, a(3) = 3. For n = 2^m + k, m > 1, 0 <= k < 2^m. If m is even, then a(2^(m+1)+k) = a(2^m + k) + 2^m and a(2^(m+1) + 2^m+k) = a(2^m+k) + 2^(m+1). If m is odd, then a(2^(m+1) + k) = a(2^m+k) + 2^(m+1) and a(2^(m+1) + 2^m+k) = a(2^m+k) + 2^m.
From Yosu Yurramendi, Mar 23 2017: (Start)
A258746(a(n)) = a(A258746(n)), n > 0.
A092569(a(n)) = a(A092569(n)), n > 0.
A117120(a(n)) = a(A117120(n)), n > 0;
A065190(a(n)) = a(A065190(n)), n > 0;
A054429(a(n)) = a(A054429(n)), n > 0;
A063946(a(n)) = a(A063946(n)), n > 0. (End)
a(1) = 1, for m >= 0 and 0 <= k < 2^m, a(2^(m+1) + 2*k) = 2*a(2^(m+1) - 1 - k), a(2^(m+1) + 2*k + 1) = 2*a(2^(m+1) - 1 - k) + 1. - Yosu Yurramendi, May 23 2020
a(n) = A020988(A102572(n)) XOR n. - Alan Michael Gómez Calderón, Mar 11 2025

A056830 Alternate digits 1 and 0.

Original entry on oeis.org

0, 1, 10, 101, 1010, 10101, 101010, 1010101, 10101010, 101010101, 1010101010, 10101010101, 101010101010, 1010101010101, 10101010101010, 101010101010101, 1010101010101010, 10101010101010101, 101010101010101010
Offset: 0

Views

Author

Henry Bottomley, Aug 30 2000

Keywords

Comments

Fibonacci bit-representations of numbers for which there is only one possible representation and for which the maximal and minimal bit-representations (A104326 and A014417) are equal. The numbers represented are equal to the numbers in A000071 (subtract the first term of that sequence). For example, 10101 = 12 because 8+5+1. - Casey Mongoven, Mar 19 2006
Sequence A000975 written in base 2. - Jaroslav Krizek, Aug 05 2009
The absolute value of alternating sum of the first n repunits: a(n) = abs(Sum_{k=0..n} (-1)^k*A002275(n)). - Ilya Gutkovskiy, Dec 02 2015
Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 131", based on the 5-celled von Neumann neighborhood. See A279053 for references and links. - Robert Price, Dec 05 2016

Examples

			n  a(n)             A000975(n)   (If a(n) is interpreted in base 2.)
------------------------------
0  0 ....................... 0
1  1 ....................... 1
2  10 ...................... 2 = 2^1
3  101 ..................... 5
4  1010 ................... 10 = 2^1 + 2^3
5  10101 .................. 21
6  101010 ................. 42 = 2^1 + 2^3 + 2^5
7  1010101 ................ 85
8  10101010 .............. 170 = 2^1 + 2^3 + 2^5 + 2^7
9  101010101 ............. 341
10 1010101010 ............ 682 = 2^1 + 2^3 + 2^5 + 2^7 + 2^9
11 10101010101 .......... 1365
12 101010101010 ......... 2730 = 2^1 + 2^3 + 2^5 + 2^7 + 2^9 + 2^11, etc.
- _Bruno Berselli_, Dec 02 2015
		

Crossrefs

Programs

  • GAP
    List([0..30], n-> Int(10^(n+1)/99) ); # G. C. Greubel, Jul 14 2019
  • Magma
    [Round((20*10^n-11)/198) : n in [0..30]]; // Vincenzo Librandi, Jun 25 2011
    
  • Maple
    A056830 := proc(n) floor(10^(n+1)/99) ; end proc:
  • Mathematica
    CoefficientList[Series[x/((1-x^2)*(1-10*x)), {x,0,30}], x] (* G. C. Greubel, Sep 26 2017 *)
  • PARI
    Vec(x/((1-x)*(1+x)*(1-10*x))+O(x^30)) \\ Charles R Greathouse IV, Feb 13 2017
    
  • Sage
    [floor(10^(n+1)/99) for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = +10*a(n-1) + a(n-2) - 10*a(n-3).
a(n) = floor(10^(n+1)/(10^2-1)) = a(n-2)+10^(n-1) = 10*a(n-1) + (1 - (-1)^n)/2.
From Paul Barry, Nov 12 2003: (Start)
a(n+1) = Sum_{k=0..floor(n/2)} 10^(n-2*k).
a(n+1) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*10^j.
G.f.: x/((1-x)*(1+x)*(1-10*x)).
a(n) = 9*a(n-1) + 10*a(n-2) + 1.
a(n) = 10^(n+1)/99 - (-1)^n/22 - 1/18. (End)
a(n) = A007088(A107909(A104161(n))) = A007088(A000975(n)). - Reinhard Zumkeller, May 28 2005
a(n) = round((20*10^n-11)/198) = floor((10*10^n-1)/99) = ceiling((10*10^n-10)/99) = round((10*10^n-10)/99). - Mircea Merca, Dec 27 2010
From Daniel Forgues, Sep 20 2018: (Start)
If a(n) is interpreted in base 2:
a(2n) = Sum_{k=1..n} 2^(2n-1), n >= 0; a(2n-1) = a(2n)/2, n >= 1.
a(2n) = A020988(n), n >= 0.
a(0) = 0; a(2n) = 4*a(2n-2) + 2, n >= 1. (End)

Extensions

More terms from Casey Mongoven, Mar 19 2006

A080674 a(n) = (4/3)*(4^n - 1).

Original entry on oeis.org

0, 4, 20, 84, 340, 1364, 5460, 21844, 87380, 349524, 1398100, 5592404, 22369620, 89478484, 357913940, 1431655764, 5726623060, 22906492244, 91625968980, 366503875924, 1466015503700, 5864062014804, 23456248059220, 93824992236884, 375299968947540, 1501199875790164
Offset: 0

Views

Author

N. J. A. Sloane, Mar 02 2003

Keywords

Comments

a(n) is the number of steps which are made when generating all n-step random walks that begin in a given point P on a two-dimensional square lattice. To make one step means to move along one edge on the lattice. - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Mar 10 2005
Conjectured to be the number of integers from 0 to (10^n)-1 that lack 0, 1, 2, 3, 4 and 5 as a digit. - Alexandre Wajnberg, Apr 25 2005
Gives the values of m such that binomial(4*m + 4,m) is odd. Cf. A002450, A020988 and A263132. - Peter Bala, Oct 11 2015
Also the partial sums of 4^n for n>0, cf. A000302. - Robert G. Wilson v, Sep 18 2016

Crossrefs

Programs

Formula

a(n) = 2*A020988(n) = A002450(n+1) - 1 = 4*A002450(n).
a(n) = Sum_{i = 1..n} 4^i. - Adam McDougall (mcdougal(AT)stolaf.edu), Sep 29 2004
a(n) = 4*a(n-1) + 4. - Alexandre Wajnberg, Apr 25 2005
a(n) = 4^n + a(n-1) (with a(0) = 0). - Vincenzo Librandi, Aug 08 2010
From Colin Barker, Oct 12 2015: (Start)
a(n) = 5*a(n-1) - 4*a(n-2).
G.f.: 4*x / ((x-1)*(4*x-1)). (End)
E.g.f.: 4*exp(x)*(exp(3*x) - 1)/3. - Elmo R. Oliveira, Dec 17 2023

A359194 Binary complement of 3*n.

Original entry on oeis.org

1, 0, 1, 6, 3, 0, 13, 10, 7, 4, 1, 30, 27, 24, 21, 18, 15, 12, 9, 6, 3, 0, 61, 58, 55, 52, 49, 46, 43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7, 4, 1, 126, 123, 120, 117, 114, 111, 108, 105, 102, 99, 96, 93, 90, 87, 84, 81, 78, 75, 72, 69, 66, 63, 60, 57
Offset: 0

Views

Author

Joshua Searle, Dec 19 2022

Keywords

Comments

The binary complement takes the binary value of a number and turns any 1s to 0s and vice versa. This is equivalent to subtracting from the next larger Mersenne number.
It is currently unknown whether every starting positive integer, upon iteration, reaches 0.
From M. F. Hasler, Dec 26 2022: (Start)
This map enjoys the following properties:
(P1) a(2*n) = a(n)*2 + 1 (since 3*(2*n) is 3*n shifted one binary digit to the left, and the one's complement yields that of 3*n with a '1' appended).
(P2) As an immediate consequence of (P1), all even-indexed values are odd.
(P3) Also from (P1), by immediate induction we have a(2^n) = 2^n-1 for all n >= 0.
(P4) Also from (P1), a(4*n) = a(n)*4 + 3.
(P5) Similarly, a(4*n+1) = a(n)*4 (because the 1's complement of 3 is 0).
(P6) From (P5), a(n) = 0 for all n in A002450 (= (4^k-1)/3). [For the initial value at n = 0 the discrepancy is explained by the fact that the number 0 should be considered to have zero digits, but here the result is computed with 0 considered to have one binary digit.] (End)

Examples

			a(7) = 10 because 3*7 = 21 = 10101_2, whose binary complement is 01010_2 = 10.
a(42) = 1 because 3*42 = 126 = 1111110_2, whose binary complement is 0000001_2 = 1.
a(52) = 99 by
  3*n        = binary 10011100
  complement = binary 01100011 = 99.
		

Crossrefs

Trisection of A035327.
Cf. A002450, A020988 (indices of 1's).
Cf. A256078.

Programs

  • PARI
    a(n)=if(n, bitneg(3*n, exponent(3*n)+1), 1) \\ Rémy Sigrist, Dec 22 2022
  • Python
    def a(n): return 1 if n == 0 else (m:=3*n)^((1 << m.bit_length()) - 1)
    print([a(n) for n in range(67)]) # Michael S. Branicky, Dec 20 2022
    

Formula

a(n) = A035327(3*n).
a(n) = 0 iff n belongs to A002450 \ {0}. - Rémy Sigrist, Dec 22 2022

A162911 Numerators of drib tree fractions, where drib is the bit-reversal permutation tree of the Bird tree.

Original entry on oeis.org

1, 1, 2, 2, 3, 1, 3, 3, 5, 1, 4, 3, 4, 2, 5, 5, 8, 2, 7, 4, 5, 3, 7, 4, 7, 1, 5, 5, 7, 3, 8, 8, 13, 3, 11, 7, 9, 5, 12, 5, 9, 1, 6, 7, 10, 4, 11, 7, 11, 3, 10, 5, 6, 4, 9, 7, 12, 2, 9, 8, 11, 5, 13, 13, 21, 5, 18, 11, 14, 8, 19, 9, 16, 2, 11, 12, 17, 7, 19, 9, 14, 4, 13, 6, 7, 5, 11, 10, 17, 3, 13
Offset: 1

Views

Author

Ralf Hinze (ralf.hinze(AT)comlab.ox.ac.uk), Aug 05 2009

Keywords

Comments

The drib tree is an infinite binary tree labeled with rational numbers. It is generated by the following iterative process: start with the rational 1; for the left subtree increment and then reciprocalize the current rational; for the right subtree interchange the order of the two steps: the rational is first reciprocalized and then incremented. Like the Stern-Brocot and the Bird tree, the drib tree enumerates all the positive rationals (A162911(n)/A162912(n)).
From Yosu Yurramendi, Jul 11 2014: (Start)
If the terms (n>0) are written as an array (left-aligned fashion) with rows of length 2^m, m = 0,1,2,3,...
1,
1, 2,
2, 3,1, 3,
3, 5,1, 4, 3, 4,2, 5,
5, 8,2, 7, 4, 5,3, 7,4, 7,1, 5, 5, 7,3, 8,
...
then the sum of the m-th row is 3^m (m = 0,1,2,), each column k is a Fibonacci-type sequence.
If the rows are written in a right-aligned fashion:
1
1, 2
2, 3,1, 3
3, 5,1, 4, 3, 4,2, 5
5, 8,2, 7,4, 5,3, 7, 4, 7,1, 5, 5, 7,3, 8
...
then each column k also is a Fibonacci-type sequence.
If the sequence is considered by blocks of length 2^m, m = 0,1,2,..., the blocks of this sequence are the reverses of blocks of A162912 (a(2^m+k) = A162912(2^(m+1)-1-k), m = 0,1,2,..., k = 0..2^m-1).
(End)
From Yosu Yurramendi, Jan 12 2017: (Start)
a(2^(m+2m' ) + A020988(m')) = A000045(m+1), m>=0, m'>=0
a(2^(m+2m'+1) + A020989(m')) = A000045(m+3), m>=0, m'>=0
a(2^(m+2m' ) - 1 - A002450(m')) = A000045(m+1), m>=0, m'>=0
a(2^(m+2m'+1) - 1 - A072197(m'-1)) = A000045(m+3), m>=0, m'>0
a(2^(m+1) -1) = A000045(m+2), m>=0. (End)

Examples

			The first four levels of the drib tree:
  [1/1],
  [1/2, 2/1],
  [2/3, 3/1, 1/3, 3/2],
  [3/5, 5/2, 1/4, 4/3, 3/4, 4/1, 2/5, 5/3].
		

Crossrefs

This sequence is the composition of A162909 and A059893: a(n) = A162909(A059893(n)). This sequence is a permutation of A002487(n+1).

Programs

  • Haskell
    import Ratio; drib :: [Rational]; drib = 1 : map (recip . succ) drib \/ map (succ . recip) drib; (a : as) \/ bs = a : (bs \/ as); a162911 = map numerator drib; a162912 = map denominator drib
    
  • PARI
    a(n) = my(x = 0, y = 1); forstep(i = logint(n, 2), 0, -1, [x, y] = if(bittest(n, i), [y, x + y], [x + y, x])); y \\ Mikhail Kurkov, Oct 12 2023
  • R
    blocklevel <- 6 # arbitrary
    a <- 1
    for(m in 0:blocklevel) for(k in 0:(2^m-1)){
      a[2^(m+1)+2*k  ] <- a[2^(m+1)-1-k]
      a[2^(m+1)+2*k+1] <- a[2^(m+1)-1-k] + a[2^m+k]
    }
    a
    # Yosu Yurramendi, Jul 11 2014
    

Formula

a(n) where a(1) = 1; a(2n) = b(n); a(2n+1) = a(n) + b(n); and b(1) = 1; b(2n) = a(n) + b(n); b(2n+1) = a(n).
a(2^(m+1)+2*k) = a(2^(m+1)-k-1), a(2^(m+1)+2*k+1) = a(2^(m+1)-k-1) + a(2^m+k), a(1) = 1, m>=0, k=0..2^m-1. - Yosu Yurramendi, Jul 11 2014
a(2^(m+1) + 2*k) = A162912(2^m + k), m >= 0, 0 <= k < 2^m.
a(2^(m+1) + 2*k + 1) = a(2^m + k) + A162912(2^m + k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 30 2016
a(n*2^m + A176965(m)) = A268087(n), n > 0, m > 0. - Yosu Yurramendi, Feb 20 2017
a(n) = A002487(A258996(n)), n > 0. - Yosu Yurramendi, Jun 23 2021

A265747 Numbers written in Jacobsthal greedy base.

Original entry on oeis.org

0, 1, 2, 10, 11, 100, 101, 102, 110, 111, 200, 1000, 1001, 1002, 1010, 1011, 1100, 1101, 1102, 1110, 1111, 10000, 10001, 10002, 10010, 10011, 10100, 10101, 10102, 10110, 10111, 10200, 11000, 11001, 11002, 11010, 11011, 11100, 11101, 11102, 11110, 11111, 20000, 100000, 100001, 100002, 100010, 100011, 100100
Offset: 0

Views

Author

Antti Karttunen, Dec 17 2015

Keywords

Comments

These are called "Jacobsthal Representation Numbers" in Horadam's 1996 paper.
Sum_{i=0..} digit(i)*A001045(2+digit(i)) recovers n from such representation a(n), where digit(0) stands for the least significant digit (at the right), and A001045(k) gives the k-th Jacobsthal number.
No larger digits than 2 will occur, which allows representing the same sequence in a more compact form by base-3 coding in A265746.
Sequence A197911 gives the terms with no digit "2" in their representation, while its complement A003158 gives the terms where "2" occurs at least once.
Numbers beginning with digit "2" in this representation are given by A020988(n) [= 2*A002450(n) = 2*A001045(2n)].

Examples

			For n=7, when selecting the terms of A001045 with the greedy algorithm, we need terms A001045(4) + A001045(2) + A001045(2) = 5 + 1 + 1, thus a(7) = "102".
For n=10, we need A001045(4) + A001045(4) = 5+5, thus a(10) = "200".
		

Crossrefs

Cf. A265745 (sum of digits).
Cf. A265746 (same numbers interpreted in base-3, then shown in decimal).
Cf. A084639 (positions of repunits).
Cf. A007961, A014417, A014418, A244159 for analogous sequences.

Programs

  • Mathematica
    jacob[n_] := (2^n - (-1)^n)/3; maxInd[n_] := Floor[Log2[3*n + 1]]; A265747[n_] := A265747[n] = 10^(maxInd[n] - 2) + A265747[n - jacob[maxInd[n]]]; A265747[0] = 0; Array[A265747, 100, 0] (* Amiram Eldar, Jul 21 2023 *)
  • PARI
    A130249(n) = floor(log(3*n + 1) / log(2));
    A001045(n) = (2^n - (-1)^n) / 3;
    A265747(n) = {if(n==0, 0, my(d=n - A001045(A130249(n))); 10^(A130249(n)-2) + if(d == 0, 0, A265747(d)));} \\ Amiram Eldar, Jul 21 2023
  • Python
    def greedyJ(n): m = (3*n+1).bit_length() - 1; return (m, (2**m-(-1)**m)//3)
    def a(n):
        if n == 0: return 0
        place, value = greedyJ(n)
        return 10**(place-2) + a(n - value)
    print([a(n) for n in range(49)]) # Michael S. Branicky, Jul 11 2021
    

Formula

a(0) = 0; for n >= 1, a(n) = 10^(A130249(n)-2) + a(n-A001045(A130249(n))).
a(n) = A007089(A265746(n)).

A039301 Number of distinct quadratic residues mod 4^n.

Original entry on oeis.org

1, 2, 4, 12, 44, 172, 684, 2732, 10924, 43692, 174764, 699052, 2796204, 11184812, 44739244, 178956972, 715827884, 2863311532, 11453246124, 45812984492, 183251937964, 733007751852, 2932031007404, 11728124029612, 46912496118444, 187649984473772, 750599937895084
Offset: 0

Views

Author

Keywords

Comments

Number of distinct n-digit suffixes of base 4 squares.

Programs

  • Magma
    [Floor((4^n+10)/6): n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011
  • Mathematica
    Floor[(4^Range[0, 30] + 10)/6] (* Paolo Xausa, Jan 29 2025 *)

Formula

a(n) = floor((4^n+10)/6).
a(n) = A007583(n-1)+1 = A020988(n-2)+2 = A083584(n-2)+3. - Ralf Stephan, Jun 14 2003
Also, a(0)=1 and, for n>0, a(n) = (4^n+8)/6. - Bruno Berselli, Jul 27 2010
G.f.: (1-3*x-2*x^2)/((1-x)*(1-4*x)). - Bruno Berselli, Jul 27 2010
a(n)-5*a(n-1)+4*a(n-2) = 0 for n>1. - Bruno Berselli, Jul 27 2010

A083584 a(n) = (8*4^n - 5)/3.

Original entry on oeis.org

1, 9, 41, 169, 681, 2729, 10921, 43689, 174761, 699049, 2796201, 11184809, 44739241, 178956969, 715827881, 2863311529, 11453246121, 45812984489, 183251937961, 733007751849, 2932031007401, 11728124029609, 46912496118441
Offset: 0

Views

Author

Paul Barry, May 01 2003

Keywords

Comments

a(n) = A007583(n+1) - 2 = A020988(n) - 1 = A039301(n+2) - 3. - Ralf Stephan, Jun 14 2003
Sum of n-th row of triangle of powers of 4: 1; 4 1 4; 16 4 1 4 16; 64 16 4 1 4 16 64; .... - Philippe Deléham, Feb 24 2014

Examples

			a(0) = 1;
a(1) = 4 + 1 + 4 = 9;
a(2) = 16 + 4 + 1 + 4 + 16 = 41;
a(3) = 64 + 16 + 4 + 1 + 4 + 16 + 64 = 169; etc. - _Philippe Deléham_, Feb 24 2014
		

Crossrefs

Cf. A083855.

Programs

Formula

a(n) = (8*4^n - 5)/3.
G.f.: (1+4*x)/((1-x)*(1-4*x)).
E.g.f.: (8*exp(4*x) - exp(x))/3.
a(0)=1, a(1)=9, a(n) = 5*a(n-1) - 4*a(n-2). - Harvey P. Dale, Oct 23 2011
a(n) = 4*a(n-1) + 5, a(0) = 1. - Philippe Deléham, Feb 24 2014
a(n+1) = 2^(2^n+1) + a(n), a(1)=1. - Ben Paul Thurston, Dec 27 2015

A087230 a(n) is the 2-adic valuation of 6*n + 4.

Original entry on oeis.org

2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 8, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1
Offset: 0

Views

Author

Labos Elemer, Aug 28 2003

Keywords

Comments

In Collatz-algorithm if initiated with m=odd value, the first 3x+1 step is followed by a(n) step corresponding to division by 2. Compare to A085058 and A087229. Each 2nd term is either =1 or equals corresponding term of A087229, depending on whether the odd number congruent to 1 or 3 modulo 4.
From K. G. Stier, Aug 19 2014: (Start)
Sequence exhibits a "pseudo" ruler function (A001511) behavior. It is similar to the latter in repeating equal terms m>0 after each 2^m steps. However, the first occurrence of m in the mentioned ruler function is simply at n=log_2(m), while in the given sequence this property develops two distinct (odd and even) strands:
First occurrence of
m=1 at a(1); m=2 at a(0)
m=3 at a(6); m=4 at a(2)
m=5 at a(26); m=6 at a(10)
m=7 at a(106); m=8 at a(42)
m=9 at a(426); m=10 at a(170)
...
where values n in the odd strand (1,6,26,106,426,...) equal sequence A020989, and values n in the even strand (0,2,10,42,170,...) equal sequence A020988. (End)

Examples

			n=85: m = 6*85+4 = 514 and Collatz-iteration goes on by one dividing step, a(85)=1.
		

Crossrefs

Programs

  • Maple
    a:= n-> padic[ordp](6*n+4, 2):
    seq(a(n), n=0..120);  # Alois P. Heinz, Mar 16 2021
  • Mathematica
    Table[Part[Part[FactorInteger[6*w+4], 1], 2], {w, 0, 100}]
    Table[IntegerExponent[6*n + 4, 2], {n, 0, 100}] (* Amiram Eldar, Jan 27 2022 *)
  • PARI
    forstep(n=0, 1000, 1, m=6*n+4; print1(valuation(m, 2), ", ") ) \\ K. G. Stier, Aug 19 2014
    
  • Perl
    sub a {
      my $nv= ((shift() << 1) | 1);
      my $bp= 1;
      while (($nv & 1) xor ($nv & 2)) {
        $nv>>= 1;
        $bp++;
      }
      return $bp;
    } # Ruud H.G. van Tol, Nov 16 2021
  • Python
    n=100; N=3*n+2; val=[1]*(N+1); exp=2
    while exp <= N:
        for j in range(exp,N+1,exp): val[j] += 1
        exp *= 2
    for i in range(n+1): print(i,val[3*i+2])
    # Kenny Lau, Jun 09 2018
    
  • Python
    def A087230(n): return (~(m:=6*n+4) & m-1).bit_length() # Chai Wah Wu, Jul 02 2022
    

Formula

a(n) = A007814(A016957(n)). - Michel Marcus, Jan 27 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Sep 10 2024

Extensions

a(0) = 2 prepended by Andrey Zabolotskiy, Jan 27 2022, based on Ihar Senkevich's contribution

A263132 Positive values of m such that binomial(4*m - 1, m) is odd.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 24, 32, 43, 44, 48, 64, 86, 88, 96, 128, 171, 172, 176, 192, 256, 342, 344, 352, 384, 512, 683, 684, 688, 704, 768, 1024, 1366, 1368, 1376, 1408, 1536, 2048, 2731, 2732, 2736, 2752, 2816, 3072, 4096, 5462, 5464, 5472, 5504
Offset: 1

Views

Author

Peter Bala, Oct 10 2015

Keywords

Comments

This sequence, when viewed as a set, equals the set of numbers of the form 4^n * ceiling(2^k/3) for n >= 0, k >= 1, i.e., the product subset in Z of A000302 and A005578 regarded as sets. See the example below.
Equivalently, this sequence, when viewed as a set, equals the set of numbers of the form 2^n * (2^(2*k + 1) + 1)/3 for n,k >= 0, i.e., the product subset in Z of A000079 and A007583 regarded as sets. See the example below.
2*a(n) gives the values of m such that binomial(4*m - 2,m) is odd. 4*a(n) gives the values of m such that binomial(4*m - 3,m) is odd (other than m = 1) and also the values of m such that binomial(4*m - 4,m) is odd.

Examples

			1) Notice how this sequence can be read from Table 1 below by moving through the table in a sequence of 'knight moves' (1 down and 2 to the left) starting from the first row. For example, starting at 11 on the top row we move in a series of knights moves 11 -> 12 -> 16, then return to the top row at 22 and move 22 -> 24 -> 32, return to the top row at 43 and move 43 -> 44 -> 48 -> 64, then return to top row at 86 and so on.
........................................................
.   Table 1: 4^n * ceiling(2^k/3) for n >= 0, k >= 1   .
........................................................
n\k|   1    2    3    4     5     6    7    8     9
---+----------------------------------------------------
0  |   1    2    3    6    11    22   43   86   171 ...
1  |   4    8   12   24    44    88  172  ...
2  |  16   32   48   96   176    ...
3  |  64  128  192  ...
4  | 256  ...
...
2) Notice how this sequence can be read from Table 2 below in a sequence of 'knight moves' (2 down and 1 to the left) starting from the first two rows. For example, starting at 43 in the first row we jump 43 -> 44 -> 48 -> 64, then return to the second row at 86 and jump 86 -> 88 -> 96 -> 128, followed by 171 -> 172 -> 176 -> 192 -> 256, and so on.
....................................................
.   Table 2: 2^n * (2^(2*k + 1) + 1)/3, n,k >= 0   .
....................................................
n\k|   0    1     2     3      4      5
---+----------------------------------------------
0  |   1    3    11    43    171    683  ...
1  |   2    6    22    86    342   1366  ...
2  |   4   12    44   172    684   2732  ...
3  |   8   24    88   344   1368   5464  ...
4  |  16   48   176   688   2736  10928  ...
5  |  32   96   352  1376   5472  21856  ...
6  |  64  192   704  2752  10944  43712  ...
7  | 128  384  1408  5504  21888  87424  ...
8  | 256 ...
		

Crossrefs

Other odd binomials: A002450 (4*m+1,m), A020988 (4*m+2,m), A263133 (4*m+3,m), A080674 (4*m+4,m), A118113 (3*m-2,m), A003714 (3*m,m).

Programs

  • Magma
    [n: n in [1..6000] | Binomial(4*n-1, n) mod 2 eq 1]; // Vincenzo Librandi, Oct 12 2015
    
  • Maple
    for n from 1 to 5000 do if mod(binomial(4*n-1, n), 2) = 1 then print(n) end if end do;
  • Mathematica
    Select[Range[6000],OddQ[Binomial[4#-1,#]]&] (* Harvey P. Dale, Dec 26 2015 *)
  • PARI
    for(n=1, 1e4, if (binomial(4*n-1, n) % 2 == 1, print1(n", "))) \\ Altug Alkan, Oct 11 2015
    
  • PARI
    a(n) = my(r,s=sqrtint(4*n-3,&r)); (1<Kevin Ryde, Jun 14 2025
    
  • Python
    A263132_list = [m for m in range(1,10**6) if not ~(4*m-1) & m] # Chai Wah Wu, Feb 07 2016

Formula

a(n) = A263133(n) + 1.
m is a term if and only if m AND NOT (4*m-1) = 0 where AND and NOT are bitwise operators. - Chai Wah Wu, Feb 07 2016
a(n) = (2^A000267(n-1) + 2^A384688(n-1)) / 3. - Kevin Ryde, Jun 14 2025

Extensions

More terms from Vincenzo Librandi, Oct 12 2015
Previous Showing 21-30 of 75 results. Next