cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A080412 Exchange rightmost two binary digits of n > 1; a(0)=0, a(1)=2.

Original entry on oeis.org

0, 2, 1, 3, 4, 6, 5, 7, 8, 10, 9, 11, 12, 14, 13, 15, 16, 18, 17, 19, 20, 22, 21, 23, 24, 26, 25, 27, 28, 30, 29, 31, 32, 34, 33, 35, 36, 38, 37, 39, 40, 42, 41, 43, 44, 46, 45, 47, 48, 50, 49, 51, 52, 54, 53, 55, 56, 58, 57, 59, 60, 62, 61, 63, 64, 66, 65, 67, 68, 70, 69, 71, 72
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 17 2003

Keywords

Comments

Self-inverse permutation of the natural numbers: a(a(n)) = n.
Lodumo_2 of A021913. - Philippe Deléham, Apr 26 2009
The lodumo_m transformation of a list L is the list L' such that L'(n) is the smallest nonnegative integer not occurring earlier in L' and equal to L(n) (mod m). - M. F. Hasler, Dec 06 2010
From Franck Maminirina Ramaharo, Jul 20 2018: (Start)
Let
A: 0, 3, 8, 11, 16, 19, 24, 27, 32, 35, 40, 43, 48, 51, 56, 59, ... A047470
B: 1, 6, 9, 14, 17, 22, 25, 30, 33, 38, 41, 46, 49, 54, 57, 62, ... A047452
C: 2, 5, 10, 13, 18, 21, 26, 29, 34, 37, 42, 45, 50, 53, 58, 61, ... A047617
D: 4, 7, 12, 15, 20, 23, 28, 31, 36, 39, 44, 47, 52, 55, 60, 63, ... A047535.
Then the sequence is obtained by repeatedly picking terms from A,B,C,D according to the circuit A-C-B-A-D-B-C-D. The sequence begins:
A | C | B | A | D | B | C | D || A | C | B | A | D | ...
--+---+---+---+---+---+---+---++---+---+---+---+---+----
0 | 2 | 1 | 3 | 4 | 6 | 5 | 7 || 8 |10 | 9 |11 |12 | ...
(End)
The sequence is a permutation of the nonnegative integers partitioned into quadruples [4k, 4k+2, 4k+1, 4k+3] for k >= 0, i.e., the two interior terms of each quadruple are interchanged. - Guenther Schrack, Apr 22 2019

Examples

			a(20) = a('101'00') = '101'00' = 20; a(21) = a('101'01') = '101'10' = 22.
a(2) = a('10') = '01' = 1; a(3) = a('11') = '11' = 3.
		

Crossrefs

Programs

  • GAP
    a:=[0,2,1,3,4];; for n in [6..80] do a[n]:=a[n-1]+a[n-4]-a[n-5]; od; a; # Muniru A Asiru, Jul 27 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 80); [0] cat Coefficients(R!( x*(2-x+2*x^2+x^3)/((1-x)*(1-x^4)) )); // G. C. Greubel, Apr 28 2019
    
  • Maple
    A080412:=n->n+1+(1+I)*(2*I-2-(1-I)*I^(2*n)+I^(-n)-I^(1+n))/4: seq(A080412(n), n=0..100); # Wesley Ivan Hurt, May 28 2016
  • Mathematica
    a[n_] := (bits = IntegerDigits[n, 2]; Join[Drop[bits, -2], {bits[[-1]], bits[[-2]]}] // FromDigits[#, 2]&); a[0]=0; a[1]=2; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Mar 11 2013 *)
    ertbd[n_]:=Module[{a,b},{a,b}=TakeDrop[IntegerDigits[n,2], IntegerLength[ n,2]-2];FromDigits[Join[a,Reverse[b]],2]]; Join[{0,2},Array[ertbd,80,2]] (* The program uses the TakeDrop function from Mathematica version 10 *) (* Harvey P. Dale, Jan 07 2016 *)
    CoefficientList[Series[x*(2-x+2*x^2+x^3)/((1-x)*(1-x^4)), {x,0,80}], x] (* G. C. Greubel, Apr 28 2019 *)
  • PARI
    my(x='x+O('x^80)); concat([0], Vec(x*(2-x+2*x^2+x^3)/((1-x)*(1-x^4)))) \\ G. C. Greubel, Apr 28 2019
    
  • Python
    def A080412(n): return (0,1,-1,0)[n&3]+n # Chai Wah Wu, Jan 18 2023
  • Sage
    (x*(2-x+2*x^2+x^3)/((1-x)*(1-x^4))).series(x, 80).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
    

Formula

a(n) = 4*floor(n/4) + a(n mod 4), for n > 3.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 4. - Joerg Arndt, Mar 11 2013
a(n) = lod_2(A021913(n)). - Philippe Deléham, Apr 26 2009
From Wesley Ivan Hurt, May 28 2016: (Start)
a(n) = n + 1 + (1+i)*(2*i-2-(1-i)*i^(2*n) + i^(-n)-i^(1+n))/4 where i=sqrt(-1).
G.f.: x*(2-x+2*x^2+x^3) / ((1-x)^2*(1+x+x^2+x^3)). (End)
E.g.f.: (sin(x) + cos(x) + (2*x + 1)*sinh(x) + (2*x - 1)*cosh(x))/2. - Ilya Gutkovskiy, May 28 2016
From Guenther Schrack, Apr 23 2019: (Start)
a(n) = (2*n - (-1)^n + (-1)^(n*(n-1)/2))/2.
a(n) = a(n-4) + 4, a(0)=0, a(1)=2, a(2)=1, a(3)=3, for n > 3. (End)

Extensions

Typo in example fixed by Reinhard Zumkeller, Jul 06 2009

A084101 Expansion of (1+x)^2/((1-x)*(1+x^2)).

Original entry on oeis.org

1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 1, 1
Offset: 0

Views

Author

Paul Barry, May 15 2003

Keywords

Comments

Partial sums of A084099. Inverse binomial transform of A000749 (without leading zeros).
From Klaus Brockhaus, May 31 2010: (Start)
Periodic sequence: Repeat 1, 3, 3, 1.
Interleaving of A010684 and A176040.
Continued fraction expansion of (7 + 5*sqrt(29))/26.
Decimal expansion of 121/909.
a(n) = A143432(n+3) + 1 = 2*A021913(n+1) + 1 = 2*A133872(n+3) + 1.
a(n) = A165207(n+1) - 1.
First differences of A047538.
Binomial transform of A084102. (End)
From Wolfdieter Lang, Feb 09 2012: (Start)
a(n) = A045572(n+1) (Modd 5) := A203571(A045572(n+1)), n >= 0.
For general Modd n (not to be confused with mod n) see a comment on A203571. The nonnegative members of the five residue classes Modd 5, called [m] for m=0,1,...,4, are shown in the array A090298 if there the last row is taken as class [0] after inclusion of 0.
(End)

Examples

			From _Wolfdieter Lang_, Feb 09 2012: (Start)
Modd 5 of nonnegative odd numbers restricted mod 5:
A045572: 1, 3, 7, 9, 11, 13, 17, 19, 21, 23, ...
Modd 5:  1, 3, 3, 1,  1,  3,  3,  1,  1,  3, ...
(End)
		

Crossrefs

Cf. A084102.
Cf. A010684 (repeat 1, 3), A176040 (repeat 3, 1), A178593 (decimal expansion of (7+5*sqrt(29))/26), A143432 (expansion of (1+x^4)/((1-x)*(1+x^2))), A021913 (repeat 0, 0, 1, 1), A133872 (repeat 1, 1, 0, 0), A165207 (repeat 2, 2, 4, 4), A047538 (congruent to 0, 1, 4 or 7 mod 8), A084099 (expansion of (1+x)^2/(1+x^2)), A000749 (expansion of x^3/((1-x)^4-x^4)). - Klaus Brockhaus, May 31 2010

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (1+x)^2/((1-x)*(1+x^2)) )); // G. C. Greubel, Feb 28 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)^2/((1-x)(1+x^2)),{x,0,110}],x] (* or *) PadRight[{},110,{1,3,3,1}] (* Harvey P. Dale, Nov 21 2012 *)
  • PARI
    x='x+O('x^100); Vec((1+x)^2/((1-x)*(1+x^2))) \\ Altug Alkan, Dec 24 2015
    
  • Sage
    ((1+x)^2/((1-x)*(1+x^2))).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Feb 28 2019

Formula

a(n) = binomial(3, n mod 4). - Paul Barry, May 25 2003
From Klaus Brockhaus, May 31 2010: (Start)
a(n) = a(n-4) for n > 3; a(0) = a(3) = 1, a(1) = a(2) = 3.
a(n) = (4 - (1+i)*i^n - (1-i)*(-i)^n)/2 where i = sqrt(-1). (End)
E.g.f.: 2*exp(x) + sin(x) - cos(x). - Arkadiusz Wesolowski, Nov 04 2017
a(n) = 2 - (-1)^(n*(n+1)/2). - Guenther Schrack, Feb 26 2019

A145768 a(n) = the bitwise XOR of squares of first n natural numbers.

Original entry on oeis.org

0, 1, 5, 12, 28, 5, 33, 16, 80, 1, 101, 28, 140, 37, 225, 0, 256, 33, 357, 12, 412, 37, 449, 976, 400, 993, 325, 924, 140, 965, 65, 896, 1920, 961, 1861, 908, 1692, 965, 1633, 912, 1488, 833, 1445, 668, 1292, 741, 2721, 512, 2816, 609, 2981, 396, 2844, 485
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 18 2008

Keywords

Comments

Up to n=10^8, a(15) is the only zero term and a(1)=a(9) are the only terms for which a(n)=1. Can it be proved that any number can only appear a finite number of times in this sequence? [M. F. Hasler, Oct 20 2008]
Even terms occur at A014601, odd terms at A042963; A010873(a(n))=A021913(n+1). - Reinhard Zumkeller, Jun 05 2012
If squares occur, they must be at indexes != 2 or 5 (mod 8). - Roderick MacPhee, Jul 17 2017

Crossrefs

Programs

  • Haskell
    import Data.Bits (xor)
    a145768 n = a145768_list !! n
    a145768_list = scanl1 xor a000290_list  -- Reinhard Zumkeller, Jun 05 2012
    
  • Maple
    A[0]:= 0:
    for n from 1 to 100 do A[n]:= Bits:-Xor(A[n-1],n^2) od:
    seq(A[i],i=0..100); # Robert Israel, Dec 08 2019
  • Mathematica
    Rest@ FoldList[BitXor, 0, Array[#^2 &, 50]]
  • PARI
    an=0; for( i=1,50, print1(an=bitxor(an,i^2),",")) \\ M. F. Hasler, Oct 20 2008
    
  • PARI
    al(n)=local(m);vector(n,k,m=bitxor(m,k^2))
    
  • Python
    from functools import reduce
    from operator import xor
    def A145768(n):
        return reduce(xor, [x**2 for x in range(n+1)]) # Chai Wah Wu, Aug 08 2014

Formula

a(n)=1^2 xor 2^2 xor ... xor n^2.

A169671 Lexicographically earliest de Bruijn sequence for n = 6 and k = 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2010

Keywords

Examples

			Periodic with period 64, the period being:
0000001000011000101000111001001011001101001111010101110110111111.
		

Crossrefs

See A058342 for another version.

A255126 Number of times a number of the form 4n+2 is encountered when iterating from 2^(n+1)-2 to (2^n)-2 with the map x -> x - (number of runs in binary representation of x).

Original entry on oeis.org

0, 1, 1, 2, 4, 6, 10, 16, 27, 50, 97, 188, 355, 652, 1177, 2126, 3886, 7204, 13501, 25465, 48192, 91411, 173851, 331821, 636035, 1224505, 2366662, 4588124, 8913418, 17338878, 33756650, 65766474, 128239805, 250346859, 489422205, 958304970, 1879145187, 3689012737
Offset: 0

Views

Author

Antti Karttunen, Feb 18 2015

Keywords

Comments

Also the number of odd numbers in range [A255062(n) .. A255061(n+1)] of A255057 (equally, in A255067). See the sum-formulas.

Examples

			For n=5 we start iterating with map m(n) = A236840(n) from the initial value (2^(5+1))-2 = 62. Thus we get m(62) = 60, m(60) = 58, m(58) = 54, m(54) = 50, m(50) = 46, m(46) = 42, m(42) = 36, m(36) = 32 and finally m(32) = 30, which is (2^5)-2. Of the nine numbers encountered, only 58, 54, 50, 46, 42 and 30 are of the form 4n+2, thus a(5) = 6. Note that the initial value 2^(n+1)-2 is not included in the cases, but the final (2^n) - 2 is.
		

Crossrefs

Programs

  • PARI
    \\ Use the PARI-code given in A255125.
    
  • Scheme
    (define (A255126 n) (if (zero? n) n (let loop ((i (- (expt 2 (+ 1 n)) 4)) (s 1)) (cond ((pow2? (+ 2 i)) s) (else (loop (- i (A005811 i)) (+ s (A021913 i))))))))
    ;; Alternatively:
    (define (A255126 n) (add (COMPOSE A000035 A255057) (A255062 n) (A255061 (+ 1 n))))
    (define (A255126 n) (add (COMPOSE A000035 A255067) (A255062 n) (A255061 (+ 1 n))))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))

Formula

a(n) = Sum_{k = A255062(n) .. A255061(n+1)} A000035(A255057(k)).
a(n) = Sum_{k = A255062(n) .. A255061(n+1)} A000035(A255067(k)).
a(n) = A255071(n) - A255125(n).

A083219 a(n) = n - 2*floor(n/4).

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13, 12, 13, 14, 15, 14, 15, 16, 17, 16, 17, 18, 19, 18, 19, 20, 21, 20, 21, 22, 23, 22, 23, 24, 25, 24, 25, 26, 27, 26, 27, 28, 29, 28, 29, 30, 31, 30, 31, 32, 33, 32, 33, 34, 35, 34, 35, 36, 37, 36, 37, 38
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Comments

Conjecture: number of roots of P(x) = x^n - x^(n-1) - x^(n-2) - ... - x - 1 in the left half-plane. - Michel Lagneau, Apr 09 2013
a(n) is n+2 with its second least significant bit removed (see A021913(n+2) for that bit). - Kevin Ryde, Dec 13 2019

Crossrefs

Cf. A083220, A129756, A162751 (second highest bit removed).
Essentially the same as A018837.

Programs

Formula

a(n) = A083220(n)/2.
a(n) = a(n-1) + n mod 2 + (n mod 4 - 1)*(1 - n mod 2), a(0) = 0.
G.f.: x*(1+x+x^2-x^3)/((1-x)^2*(1+x)*(1+x^2)). - R. J. Mathar, Aug 28 2008
a(n) = n - A129756(n). - Michel Lagneau, Apr 09 2013
Bisection: a(2*k) = 2*floor((n+2)/4), a(2*k+1) = a(2*k) + 1, k >= 0. - Wolfdieter Lang, May 08 2017
a(n) = (2*n + 3 - 2*cos(n*Pi/2) - cos(n*Pi) - 2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 02 2017
a(n) = A162330(n+2) - 1 = A285869(n+3) - 1. - Kevin Ryde, Dec 13 2019
E.g.f.: ((1 + x)*cosh(x) - cos(x) + (2 + x)*sinh(x) - sin(x))/2. - Stefano Spezia, May 27 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2) - 1. - Amiram Eldar, Aug 21 2023

A169673 Lexicographically earliest de Bruijn sequence for n = 7 and k = 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2010

Keywords

Examples

			Periodic with period 128, the period being:
00000001000001100001010000111000100100010110001101000111100100110\
010101001011100110110011101001111101010110101111011011101111111
		

Crossrefs

A169674 Lexicographically earliest de Bruijn sequence for n = 8 and k = 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2010

Keywords

Examples

			Periodic with period 256, the period being:
0000000010000001100000101000001110000100100001011000011010000111100010\
0010011000101010001011100011001000110110001110100011111001001010010011\
1001010110010110100101111001100110101001101110011101100111101001111110\
1010101110101101101011111011011110111011111111
		

Crossrefs

A169672 Lexicographically earliest de Bruijn sequence for n = 5 and k = 2.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2010

Keywords

Examples

			Periodic with period 32, the period being: 00000100011001010011101011011111.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1},{0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1},99] (* Ray Chandler, Aug 26 2015 *)

A169675 Lexicographically earliest de Bruijn sequence for n = 3 and k = 2.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2010

Keywords

Comments

The lexicographically earliest de Bruijn sequence for n = 2 and k = 2 is 0011 repeated (see A021913).

Examples

			Periodic with period 8, the period being 00010111.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{0, 0, 0, 1, 0, 1, 1, 1},99] (* Ray Chandler, Aug 25 2015 *)
    PadRight[{},120,{0,0,0,1,0,1,1,1}] (* Harvey P. Dale, Aug 01 2024 *)
Previous Showing 11-20 of 32 results. Next