cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 154 results. Next

A052378 Primes followed by a [4,2,4] prime difference pattern of A001223.

Original entry on oeis.org

7, 13, 37, 97, 103, 223, 307, 457, 853, 877, 1087, 1297, 1423, 1483, 1867, 1993, 2683, 3457, 4513, 4783, 5227, 5647, 6823, 7873, 8287, 10453, 13687, 13873, 15727, 16057, 16063, 16183, 17383, 19417, 19423, 20743, 21013, 21313, 22273, 23053, 23557
Offset: 1

Views

Author

Labos Elemer, Mar 22 2000

Keywords

Comments

The sequence includes A052166, A052168, A022008 and also other primes like 13, 103, 16063 etc.
a(n) is the lesser term of a 4-twin (A023200) after which the next 4-twin comes in minimal distance [here it is 2; see A052380(4/2)].
Analogous prime sequences are A047948, A052376, A052377 and A052188-A052198 with various [d, A052380(d/2), d] difference patterns following a(n).
All terms == 1 (mod 6) - Zak Seidov, Aug 27 2012
Subsequence of A022005. - R. J. Mathar, May 06 2017

Examples

			103 initiates [103,107,109,113] prime quadruple followed by [4,2,4] difference pattern.
		

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Prime[x + 3] - Prime[x] == 10, AppendTo[a, Prime[x]]], {x, 1, 10000}]; a (* Zerinvary Lajos, Apr 03 2007 *)
    Select[Partition[Prime[Range[3000]],4,1],Differences[#]=={4,2,4}&][[All,1]] (* Harvey P. Dale, Jun 16 2017 *)
  • PARI
    is(n)=n%6==1 && isprime(n+4) && isprime(n+6) && isprime(n+10) && isprime(n) \\ Charles R Greathouse IV, Apr 29 2015

Formula

a(n) is the initial prime of a [p, p+4, p+6, p+6+4] prime-quadruple consisting of two 4-twins: [p, p+4] and [p+6, p+10].

A087679 Numbers k such that both k+2 and k-2 are prime.

Original entry on oeis.org

5, 9, 15, 21, 39, 45, 69, 81, 99, 105, 111, 129, 165, 195, 225, 231, 279, 309, 315, 351, 381, 399, 441, 459, 465, 489, 501, 615, 645, 675, 741, 759, 771, 825, 855, 861, 879, 885, 909, 939, 969, 1011, 1089, 1095, 1215, 1281, 1299, 1305, 1425, 1431, 1449, 1485
Offset: 1

Views

Author

Zak Seidov, Sep 27 2003

Keywords

Comments

Essentially the same as A029708: a(n) = A029708(n-1) for n>=2.
Midpoint of cousin prime pairs.
The only prime is 5. All other terms are multiples of 3. - Zak Seidov, May 19 2014

Crossrefs

Programs

  • Maple
    ZL:=[]:for p from 1 to 1485 do if (isprime(p) and isprime(p+4) ) then ZL:=[op(ZL),(p+(p+4))/2]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
  • Mathematica
    lst={};Do[If[PrimeQ[n-2]&&PrimeQ[n+2],AppendTo[lst,n]],{n,3,8!,2}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 14 2009 *)
  • PARI
    s=[]; for(n=1, 2000, if(isprime(n-2) && isprime(n+2), s=concat(s, n))); s \\ Colin Barker, May 19 2014
    
  • PARI
    is_A087679(n)={isprime(n-2) && isprime(n+2)} \\ For numbers >> 10^12 one should add conditions {n%6==3 && ... || n==5} or consider only such numbers congruent to 3 (mod 6). - M. F. Hasler, Apr 05 2017

Formula

a(n) = (A023200(n) + A046132(n))/2 = A023200(n) + 2 = A046132(n) - 2.
a(n+1) = A056956(n)*6 + 3 = A157834(n)*3; a(n) = A088762(n)*2 + 1. - M. F. Hasler, Apr 05 2017

Extensions

More terms from Ray Chandler, Oct 26 2003

A015913 Numbers k such that sigma(k) + 4 = sigma(k+4).

Original entry on oeis.org

3, 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 673, 739, 757, 769, 823, 853, 859, 877, 883, 907, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1303, 1423
Offset: 1

Views

Author

Keywords

Comments

This sequence contains the composite number 305635357, so is different from A023200 and A029710 (305635357 is the only composite member of the present sequence below 10^9). - Jud McCranie, Jan 07 2001

Crossrefs

Programs

A049488 Primes p such that p+16 is prime.

Original entry on oeis.org

3, 7, 13, 31, 37, 43, 67, 73, 97, 151, 157, 163, 181, 211, 223, 241, 277, 331, 337, 367, 373, 433, 463, 487, 541, 547, 571, 577, 601, 631, 643, 661, 727, 757, 811, 823, 937, 967, 997, 1033, 1087, 1093, 1171, 1201, 1213, 1291, 1303, 1423, 1471, 1483, 1543
Offset: 1

Views

Author

Keywords

Comments

Using the Elliott-Halberstam conjecture, Goldston et al. prove that there are an infinite number of primes here. - T. D. Noe, Nov 26 2013

Examples

			7 and 7+16=23 are prime.
		

References

  • P. D. T. A. Elliott and H. Halberstam, A conjecture in prime number theory, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), pages 59-72, Academic Press, London, 1970.

Crossrefs

Programs

A172367 Numbers k > 0 such that k+4 is a prime.

Original entry on oeis.org

1, 3, 7, 9, 13, 15, 19, 25, 27, 33, 37, 39, 43, 49, 55, 57, 63, 67, 69, 75, 79, 85, 93, 97, 99, 103, 105, 109, 123, 127, 133, 135, 145, 147, 153, 159, 163, 169, 175, 177, 187, 189, 193, 195, 207, 219, 223, 225, 229, 235, 237, 247, 253, 259, 265, 267, 273, 277, 279
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 01 2010

Keywords

Comments

The subsequence of primes A023200 consists of the smallest primes p of cousin prime pairs (p, p+4), while the subsequence of nonprimes is A164384. - Bernard Schott, Oct 19 2021

Examples

			a(1) = 5 - 4 = 1, a(2) = 7 - 4 = 3.
		

Crossrefs

Programs

Formula

a(n) = prime(n+2) - 4.

A049492 Primes p such that p+4 and p+16 are also primes.

Original entry on oeis.org

3, 7, 13, 37, 43, 67, 97, 163, 223, 277, 463, 487, 643, 757, 823, 937, 967, 1087, 1093, 1213, 1303, 1423, 1483, 1567, 1597, 1693, 1873, 2083, 2137, 2293, 2377, 2617, 2683, 2953, 3187, 3343, 3847, 3907, 4003, 4447, 4783, 5503, 5653, 5923, 6547, 6967, 6997
Offset: 1

Views

Author

Keywords

Comments

All terms > 3 are == 1 (mod 6). - Zak Seidov, Sep 05 2014
Intersection of A023200 and A049488. - Michel Marcus, Sep 05 2014

Examples

			3, 3+4 = 7, 3+16 = 19 are all primes.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[900]],And@@PrimeQ[#+{4,16}]&] (* Harvey P. Dale, Jan 17 2011 *)
  • PARI
    lista(nn) = forprime (n=1, nn, if (isprime(n+4) && isprime(n+16), print1(n, ", "))); \\ Michel Marcus, Sep 05 2014

A074822 Primes p such that p + 4 is prime and p == 9 (mod 10).

Original entry on oeis.org

19, 79, 109, 229, 349, 379, 439, 499, 739, 769, 859, 1009, 1279, 1429, 1489, 1549, 1579, 1609, 1999, 2239, 2269, 2389, 2539, 2659, 2689, 2749, 3019, 3079, 3319, 3529, 3919, 4129, 4519, 4639, 4729, 4789, 4969, 4999, 5479, 5569, 5689, 5779, 5839, 6199
Offset: 1

Views

Author

Roger L. Bagula, Sep 30 2002

Keywords

Comments

From Rémi Eismann, May 14 2006; May 04 2007: (Start)
Also primes for which k is equal to 5 in A117078. Examples: prime(9) = prime(8) + (prime(8) mod 5) = 19 + (19 mod 5)=23; prime(23) = prime(22) + (prime(22) mod 5) = 79 + (79 mod 5)=83; prime(1359) = prime(1358) + (prime(1358) mod 5) = 11239+ (11239 mod 5)=11243.
The prime numbers in this sequence are of the form (10i-1) with i=(level(n)+1)/2, level(n) defined in A117563.
Consider A117078: a(n) = smallest k such that prime(n+1) = prime(n) + (prime(n) mod k), or 0 if no such k exists. Sequence gives values of prime(n) for which k=5. (End)
p is the lesser member of cousin primes (p,p+4) such that p == 9 (mod 10). - Muniru A Asiru, Jul 03 2017

Crossrefs

Intersection of A023200 and A030433.

Programs

  • Mathematica
    Prime[ Select[ Range[1000], Prime[ # ] + 4 == Prime[ # + 1] && Mod[ Prime[ # ], 10] == 9 & ]]
    Transpose[Select[Partition[Prime[Range[820]],2,1],Last[#]-First[#] == 4 && Mod[ First[ #],10]==9&]][[1]] (* Harvey P. Dale, Oct 20 2011 *)
  • PARI
    is(n)=n%30==19 && isprime(n+4) && isprime(n) \\ Charles R Greathouse IV, Jul 12 2017
    
  • PARI
    list(lim)=my(v=List(),p=19); forprime(q=23,lim+4, if(q-p==4 && p%30==19, listput(v,p)); p=q); Vec(v) \\ Charles R Greathouse IV, Jul 12 2017

Extensions

Edited by Robert G. Wilson v and N. J. A. Sloane, Oct 03 2002
Entry revised by N. J. A. Sloane, Feb 24 2007

A056956 Numbers n such that 6n+1 and 6n+5 are both primes.

Original entry on oeis.org

1, 2, 3, 6, 7, 11, 13, 16, 17, 18, 21, 27, 32, 37, 38, 46, 51, 52, 58, 63, 66, 73, 76, 77, 81, 83, 102, 107, 112, 123, 126, 128, 137, 142, 143, 146, 147, 151, 156, 161, 168, 181, 182, 202, 213, 216, 217, 237, 238, 241, 247, 248, 258, 261, 263, 266, 268, 277, 282
Offset: 1

Views

Author

Henry Bottomley, Jul 18 2000

Keywords

Comments

Note that if prime p>3 then p mod 6 = 1 or 5.

Examples

			a(2)=2 since 6*2+1=13 and 6*2+5=17 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300], And @@ PrimeQ /@ ({1, 5} + 6#) &] (* Ray Chandler, Jun 29 2008 *)
  • PARI
    is(n)=isprime(n*6+1)&&isprime(n*6+5) \\ M. F. Hasler, Apr 05 2017

Formula

a(n) = (A023200(n+1)-1)/6 = (A046132(n+1)-5)/6 = A047847(n+1)/3
a(n) = floor(A087679(n+1)/6). - M. F. Hasler, Apr 05 2017

Extensions

Edited by N. J. A. Sloane, Nov 07 2006

A046136 Primes p such that p, p+4 and p+10 are primes.

Original entry on oeis.org

3, 7, 13, 19, 37, 43, 79, 97, 103, 127, 163, 223, 229, 307, 349, 379, 439, 457, 499, 643, 673, 853, 877, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1423, 1429, 1483, 1489, 1549, 1597, 1609, 1867, 1993, 2203, 2347, 2389, 2437, 2539, 2683, 2689, 2833, 2953
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    q:= p-> andmap(isprime, [p, p+4, p+10]):
    select(q, [$2..3000])[];  # Alois P. Heinz, Feb 23 2020
  • Mathematica
    Select[Range@ 2820, AllTrue[{#, # + 4, # + 10}, PrimeQ] &] (* Michael De Vlieger, Jul 24 2015, Version 10 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(p+4) && isprime(p+10), print1(p, ", "))); \\ Michel Marcus, Jul 24 2015

Formula

A023200 INTERSECT A023203. - R. J. Mathar, Jan 23 2009

A054905 Smallest composite x such that sigma(x) + 2n = sigma(x + 2n).

Original entry on oeis.org

434, 305635357, 104, 27, 195556, 65, 12, 39, 20, 56, 916, 80, 212282, 57, 44, 106645, 52, 125
Offset: 1

Views

Author

Labos Elemer May 23 2000

Keywords

Comments

a(19) > 4293000000, if it exists. - Jud McCranie, May 25 2000
a(19) > 10^11, if it exists. - Charles R Greathouse IV, Oct 26 2022

Examples

			a(5) corresponds to n=3+2=5, d=2n=10 and the smallest composite integer is 195556. The next solution is 1152136225.
		

Crossrefs

Programs

  • PARI
    a(n)=forcomposite(x=3,10^66,if(sigma(x)+2*n==sigma(x+2*n),return(x)));
    for(n=1,66,print1(a(n),", ")); \\ Joerg Arndt, Nov 15 2014
    
  • PARI
    a19(lim,startAt=39)=startAt=ceil(startAt); my(v=vectorsmall(38),i=(startAt-1)%38); forfactored(n=startAt,lim\1+38, my(t=sigma(n)); if(i++>38,i=1); if(t==v[i]+38, return(n[1]-38)); v[i]=if(vecsum(n[2][,2])>1,t,0)) \\ Charles R Greathouse IV, Oct 25 2022

Extensions

Description corrected by Jud McCranie, May 25 2000
Previous Showing 11-20 of 154 results. Next