cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A023200 Primes p such that p + 4 is also prime.

Original entry on oeis.org

3, 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, 127, 163, 193, 223, 229, 277, 307, 313, 349, 379, 397, 439, 457, 463, 487, 499, 613, 643, 673, 739, 757, 769, 823, 853, 859, 877, 883, 907, 937, 967, 1009, 1087, 1093, 1213, 1279, 1297, 1303, 1423, 1429, 1447, 1483
Offset: 1

Views

Author

Keywords

Comments

Smaller member p of cousin prime pairs (p, p+4).
A015913 contains the composite number 305635357, so it is different from both the present sequence and A029710. (305635357 is the only composite member of A015913 < 10^9.) - Jud McCranie, Jan 07 2001
Apart from the first term, all terms are of the form 6n + 1.
Complement of A067775 (primes p such that p + 4 is composite) with respect to A000040 (primes). With prime 2 also primes p such that q^2 + p is prime for some prime q (q = 3 if p = 2, q = 2 if p > 2). Subsequence of A232012. - Jaroslav Krizek, Nov 23 2013
Conjecture: The sequence is infinite and for every n, a(n+1) < a(n)^(1+1/n). Namely a(n)^(1/n) is a strictly decreasing function of n. - Jahangeer Kholdi and Farideh Firoozbakht, Nov 24 2014
From Alonso del Arte, Jan 12 2019: (Start)
If p splits in Z[sqrt(-2)], p + 4 is an inert prime in that domain. Likewise, if p splits in Z[sqrt(2)], p + 4 is an inert prime in that domain.
The only way for p or p + 4 to split in both domains is if it is congruent to 1 modulo 24, in which case the other prime is inert in both domains.
For example, 3 = (1 - sqrt(-2))*(1 + sqrt(-2)) but is inert in Z[sqrt(2)], while 7 = (3 - sqrt(2))*(3 + sqrt(2)) but is inert in Z[sqrt(-2)]. And also 11 = (3 - sqrt(-2))*(3 + sqrt(-2)) but 15 is composite in Z or any quadratic integer ring.
And 97 = (5 - 6*sqrt(-2))*(5 + 6*sqrt(-2)) = (1 - 7*sqrt(2))*(1 + 7*sqrt(2)), but 101 is inert in both Z[sqrt(-2)] and Z[sqrt(2)]. (End)

Crossrefs

Exactly the same as A029710 except for the exclusion of 3.

Programs

  • Haskell
    a023200 n = a023200_list !! (n-1)
    a023200_list = filter ((== 1) . a010051') $
                   map (subtract 4) $ drop 2 a000040_list
    -- Reinhard Zumkeller, Aug 01 2014
  • Magma
    [p: p in PrimesUpTo(1500) | NextPrime(p)-p eq 4]; // Bruno Berselli, Apr 09 2013
    
  • Maple
    A023200 := proc(n) option remember; if n = 1 then 3; else p := nextprime(procname(n-1)) ; while not isprime(p+4) do p := nextprime(p) ;  end do: p ; end if; end proc: # R. J. Mathar, Sep 03 2011
  • Mathematica
    Select[Range[10^2], PrimeQ[#] && PrimeQ[# + 4] &] (* Vladimir Joseph Stephan Orlovsky, Apr 29 2008 *)
    Select[Prime[Range[250]],PrimeQ[#+4]&] (* Harvey P. Dale, Oct 09 2023 *)
  • PARI
    print1(3);p=7;forprime(q=11,1e3,if(q-p==4,print1(", "p)); p=q) \\ Charles R Greathouse IV, Mar 20 2013
    

Formula

a(n) = A046132(n) - 4 = A087679(n) - 2.
a(n) >> n log^2 n via the Selberg sieve. - Charles R Greathouse IV, Nov 20 2016

Extensions

Definition modified by Vincenzo Librandi, Aug 02 2009
Definition revised by N. J. A. Sloane, Mar 05 2010

A054905 Smallest composite x such that sigma(x) + 2n = sigma(x + 2n).

Original entry on oeis.org

434, 305635357, 104, 27, 195556, 65, 12, 39, 20, 56, 916, 80, 212282, 57, 44, 106645, 52, 125
Offset: 1

Views

Author

Labos Elemer May 23 2000

Keywords

Comments

a(19) > 4293000000, if it exists. - Jud McCranie, May 25 2000
a(19) > 10^11, if it exists. - Charles R Greathouse IV, Oct 26 2022

Examples

			a(5) corresponds to n=3+2=5, d=2n=10 and the smallest composite integer is 195556. The next solution is 1152136225.
		

Crossrefs

Programs

  • PARI
    a(n)=forcomposite(x=3,10^66,if(sigma(x)+2*n==sigma(x+2*n),return(x)));
    for(n=1,66,print1(a(n),", ")); \\ Joerg Arndt, Nov 15 2014
    
  • PARI
    a19(lim,startAt=39)=startAt=ceil(startAt); my(v=vectorsmall(38),i=(startAt-1)%38); forfactored(n=startAt,lim\1+38, my(t=sigma(n)); if(i++>38,i=1); if(t==v[i]+38, return(n[1]-38)); v[i]=if(vecsum(n[2][,2])>1,t,0)) \\ Charles R Greathouse IV, Oct 25 2022

Extensions

Description corrected by Jud McCranie, May 25 2000

A098974 Primes p such that q-p = 24, where q is the next prime after p.

Original entry on oeis.org

1669, 2179, 4177, 4523, 4759, 5237, 6173, 6397, 6737, 7079, 7369, 7793, 8123, 8329, 9067, 11003, 11633, 11839, 12073, 12119, 13009, 13267, 16033, 16193, 16453, 16763, 16787, 17053, 17683, 17989, 18593, 18637, 19183, 19507, 20483, 22409, 22877, 23227
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 23 2004

Keywords

Comments

Lower prime of a difference of 24 between consecutive primes.
23 successive numbers after prime number p are composite. - Artur Jasinski, Jan 15 2007

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Prime[x + 1] - Prime[x] == 24, AppendTo[a, Prime[x]]], {x, 1, 10000}]; a (* Artur Jasinski, Jan 15 2007 *)

Extensions

Entry revised by N. J. A. Sloane, Feb 13 2007

A015915 Numbers k such that sigma(k) + 8 = sigma(k+8).

Original entry on oeis.org

3, 5, 11, 23, 27, 29, 53, 59, 71, 89, 101, 131, 149, 173, 191, 233, 263, 269, 359, 389, 401, 431, 449, 479, 491, 563, 569, 593, 599, 653, 683, 701, 719, 743, 761, 821, 911, 929, 983, 1013, 1031, 1061, 1109, 1163, 1193, 1223, 1229, 1283, 1289
Offset: 1

Views

Author

Keywords

Comments

Different from A023202. Below 1000000 four composites were found [27, 1615, 1885, 218984] satisfying the "sigma(k) + 8 = sigma(k+8)" relation, together with more than 8000 primes. - Labos Elemer, May 23 2000

Examples

			sigma(27) + 8 = 48 = sigma(27+8), so 27 is in the sequence.
		

Crossrefs

Composite solutions are in A059118.

Programs

A015916 Numbers k such that sigma(k) + 10 = sigma(k+10).

Original entry on oeis.org

3, 7, 13, 19, 31, 37, 43, 61, 73, 79, 97, 103, 127, 139, 157, 163, 181, 223, 229, 241, 271, 283, 307, 337, 349, 373, 379, 409, 421, 433, 439, 457, 499, 547, 577, 607, 631, 643, 673, 691, 709, 733, 751, 787, 811, 829, 853, 877, 919, 937, 967, 1009
Offset: 1

Views

Author

Keywords

Comments

Different from A023203. Below 1000000 the only composite number here is 195556: sigma(195556) + 10 = 342230 + 10 = sigma(195566). - Labos Elemer, May 23 2000

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], DivisorSigma[1, #] + 10==DivisorSigma[1, # + 10] &] (* Vincenzo Librandi, Mar 10 2014 *)
    Select[Partition[DivisorSigma[1,Range[1100]],11,1],#[[1]]+10==#[[-1]]&][[All,1]]-1 (* Harvey P. Dale, May 20 2021 *)

A054906 Smallest number x such that sigma(x+2n) = sigma(x)+2n (first definition).

Original entry on oeis.org

3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 7, 5, 3, 5, 3, 3, 7, 5, 3, 5, 3, 7, 5, 3, 13, 7, 5, 3, 5, 3, 3, 5, 3, 3, 5, 3, 19, 13, 11, 13, 7, 5, 3, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 7, 5, 3, 7, 5, 3, 5, 3, 7, 5, 3, 7, 5, 3, 3, 11, 11, 7, 5, 3, 3, 5, 3, 3, 13
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

Least (prime) solutions for phi(x+2n)=phi(x)+2n seems to be identical to this sequence, while prime solutions are indeed identical to this sequence.
2nd definition = smallest number x such that phi(x+2n)=phi(x)+2n.
3rd definition = smallest primes p such that p+2n=q prime (A020483).
The 3 definitions are identical or conjectured to be identical.
The definitions are not identical if we do not take the smallest numbers. These smallest solutions are believed to be always prime numbers.
Duplicate of A020483, assuming that the 3rd definition is also correct. - R. J. Mathar, Apr 26 2015
If it can be proved that all these definitions are identical, then this entry should be merged with A020483. - N. J. A. Sloane, Feb 06 2017

Examples

			n-th primes 2,3,5,7,11,13, are solutions to sigma(x+2n)=2n+sigma(x) at 2n=2,6,22,116,88.
		

References

  • Sivaramakrishnan,R.(1989):Classical Theory of Arithmetical Functions. Marcel Dekker,Inc., New York.

Crossrefs

Programs

  • Maple
    A054906 := proc(n)
        local x;
        for x from 0 do
            if numtheory[sigma](x+2*n) = numtheory[sigma](x)+2*n then
                return x;
            end if;
        end do:
    end proc:
    seq(A054906(n),n=1..40); # R. J. Mathar, Sep 23 2016
  • Mathematica
    Table[x = 1; While[DivisorSigma[1, x + 2 n] != DivisorSigma[1, x] + 2 n, x++]; x, {n, 100}] (* Michael De Vlieger, Feb 05 2017 *)
  • PARI
    a(n) = my(x = 1); while(sigma(x+2*n) != sigma(x)+2*n, x++); x; \\ Michel Marcus, Dec 17 2013

Formula

Minimal solutions to A000203(x+2n)=A000203(x)+2n or to A000010(x+2n)=A000010(x)+2n or to p+2n=q; p, q primes, a(n)=p.
a(n) <= A054905(n). - R. J. Mathar, Apr 28 2015

A054902 Composite numbers n such that sigma(n)+12 = sigma(n+12).

Original entry on oeis.org

65, 170, 209, 1394, 3393, 4407, 4556, 11009, 13736, 27674, 38009, 38845, 47402, 76994, 157994, 162393, 184740, 186686, 209294, 680609, 825359, 954521, 1243574, 2205209, 3515609, 4347209, 5968502, 6539102, 6916241, 8165294, 10352294, 10595009, 10786814
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Examples

			n = 65, sigma(65)+12 = 84+12 = 96 = sigma(65+12) = sigma(77).
n = 11009, sigma(11009)+12 = 11220+12 = 11232 = sigma(11009+12) = sigma(11021).
		

Crossrefs

Complement of A046133 with respect to A015917.

Programs

  • PARI
    isok(n) = !isprime(n) && ((sigma(n)+12) == sigma(n+12)); \\ Michel Marcus, Dec 18 2013

Extensions

More terms from Jud McCranie, May 24 2000
Three more terms from Michel Marcus, Dec 18 2013

A056772 Numbers k such that phi(k+4) = phi(k) + 4, where phi(k) = A000010(k) is Euler's totient function.

Original entry on oeis.org

3, 7, 12, 13, 18, 19, 24, 28, 36, 37, 40, 43, 66, 67, 79, 88, 97, 103, 109, 124, 127, 163, 184, 193, 223, 229, 232, 277, 307, 313, 328, 349, 379, 397, 424, 439, 457, 463, 487, 499, 508, 613, 643, 664, 673, 712, 739, 757, 769, 823, 853, 859, 877, 883, 904, 907
Offset: 1

Views

Author

Labos Elemer, Aug 17 2000

Keywords

Comments

In contrast with A015913, composite solutions are not rare. Prime solutions are common.
From Kevin J. Gomez, Mar 02 2016: (Start)
Composite solutions have two known forms:
n such that n = 4 * (2^p - 1) where 2^p - 1 is a Mersenne prime. (A001348)
n such that n = 8q where q is a Sophie Germain prime. (A005394)
There are composite solutions (such as 36) that do not fit either of these forms. (End)

Examples

			For k = 1048: phi(1048) = 520, phi(1048+4) = 524.
		

Crossrefs

Cf. A000010, A015913 (sigma(k+4) = sigma(k) + 4).
Cf. A001838 (k=2), this sequence (k=4), A262084 (k=6), A262085 (k=8), A262086 (k=10).

Programs

A054903 Composite numbers n such that sigma(n)+6 = sigma(n+6), where sigma=A000203.

Original entry on oeis.org

104, 147, 596, 1415, 4850, 5337, 370047, 1630622, 35020303, 120221396, 3954451796, 742514284703
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

Complement of A023201 with respect to A015914.
Intersection of A015914 and A018252.
Below 1000000 there are only 7 such composite numbers, compared with more than 16000 primes.
a(13) > 10^13. - Giovanni Resta, Jul 11 2013

Examples

			n=104, sigma(104)+6 = 210+6 = 216 = sigma(104+6) = sigma(110).
a(4) = 1415 = 5*283, 1415+6 = 1421 = 7*7*29:
sigma(1415) = 1+5+283+1415 = 1704,
sigma(1421) = 1+7+29+49+203+1421 = 1710 = sigma(1415)+6.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 104, p. 37, Ellipses, Paris 2008.

Crossrefs

Programs

Extensions

More terms from Jud McCranie, May 25 2000
New definition from Reinhard Zumkeller, Jan 27 2009
Edited by N. J. A. Sloane, Jan 31 2009 at the suggestion of R. J. Mathar.
a(12) from Giovanni Resta, Jul 11 2013

A054987 Smallest composite x such that sigma(x+2^n) = sigma(x) + 2^n.

Original entry on oeis.org

434, 305635357, 27, 39, 106645, 69, 2275, 63, 6475, 249, 7735, 3703, 10803, 16383, 58869, 51181, 87951, 1695, 9579, 105237, 98829, 1143369, 789609, 11625, 14038691, 178975, 48627929, 1881333, 402373721, 2667945, 82915599, 353195221, 70106601
Offset: 1

Views

Author

Labos Elemer, May 29 2000

Keywords

Comments

The sequence is initiated by smallest of A015915. Special primes of A023202, A049488-A049491 also satisfy the Sigma[p+2^w]=Sigma[p]+2^w relation

Examples

			For the term 69: Sigma[69+2^6] = Sigma[133] = 1+7+19+133 = Sigma[69]+64 = (1+3+23+69)+64 = 160.
		

Crossrefs

Programs

  • Mathematica
    Table[ Select[ Range[ 1, 110000 ], Equal[ EulerPhi[ #+2^k ]-EulerPhi[ # ]-2^k, 0 ] &&!PrimeQ[ # ]& ], {k, 1, 22} ]
  • PARI
    a(n)=my(N=2^n,x=3); while(isprime(x++) || sigma(x+N) != sigma(x)+N,); x \\ Charles R Greathouse IV, Mar 11 2014

Extensions

More terms from Labos Elemer, Aug 14 2003
a(21) corrected and a(27)-a(33) from Donovan Johnson, Nov 30 2008
Showing 1-10 of 18 results. Next