cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A104719 Concatenations of pairs of primes that differ by 10.

Original entry on oeis.org

313, 717, 1323, 1929, 3141, 3747, 4353, 6171, 7383, 7989, 97107, 103113, 127137, 139149, 157167, 163173, 181191, 223233, 229239, 241251, 271281, 283293, 307317, 337347, 349359, 373383, 379389, 409419, 421431, 433443, 439449, 457467, 499509
Offset: 1

Views

Author

Keywords

Comments

There are no primes in this sequence after a(1) = 313, as all values thereafter are divisible by 3. Semiprimes in this sequence include: a(2) = 717 = 3 * 239, a(4) = 1929 = 3 * 643, a(6) = 3747 = 3 * 1249, a(7) = 4353 = 3 * 1451, a(10) = 7989 = 3 * 2663, a(11) = 97107 = 3 * 32369, a(13) = 127137 = 3 * 42379, a(17) = 181191 = 3 * 60397, a(18) = 223233 = 3 * 74411, a(29) = 421431 = 3 * 140477, a(30) = 433443 = 3 * 144481, a(34) = 547557 = 3 * 182519, a(35) = 577587 = 3 * 192529, a(40) = 691701 = 3 * 230567, a(41) = 709719 = 3 * 236573, a(49) = 919929 = 3 * 306643, a(52) = 10091019 = 3 * 3363673.

Examples

			Primes 3 and 13 differ by 10.
		

Crossrefs

Programs

  • Mathematica
    FromDigits[Join[IntegerDigits[#],IntegerDigits[#+10]]]&/@Select[ Prime[ Range[ 100]], PrimeQ[ #+10]&] (* Harvey P. Dale, Jun 14 2015 *)

Formula

a(n) = A023203(n) concatenated with A023203(n)+10.

A248855 a(n) is the smallest positive integer m such that if k >= m then a(k+1,n)^(1/(k+1)) <= a(k,n)^(1/k), where a(k,n) is the k-th term of the sequence {p | p and p+2n are primes}.

Original entry on oeis.org

1, 1, 1, 1, 3556, 1, 34, 3, 4, 1, 2, 1, 11285, 5, 2, 124, 569, 1, 290, 3, 1, 165, 2, 1, 1, 2, 1, 316, 1, 2, 58957, 1, 3, 58617, 522, 2, 1, 1, 4, 1, 2, 1, 1, 2, 1, 7932, 4, 1, 5875, 1679, 4, 4, 3, 3, 1, 2, 307, 1, 1, 1, 1, 1, 4, 3206, 2, 1, 1, 3, 2, 1, 1, 1, 1, 5, 2, 11170, 1, 2, 4245, 1, 1, 81, 2, 1, 1, 2, 58, 1, 3, 4, 7303, 1, 1, 5, 1, 3, 3, 3, 383, 111408, 1
Offset: 0

Views

Author

Keywords

Comments

All terms conjecturally are found. Note that according to the definition a(k,0) is the k-th term of the sequence {p | p is prime} namely for every positive integer k, a(k,0) = prime(k). Hence if Firoozbakht's conjecture is true then a(0)=1.

Examples

			a(0)=a(1)=a(2)=a(3)=1 conjecturally states that the four sequences A000040, A001359, A023200 and A023201 have this property: For every positive integer n, b(n) exists and b(n+1) < b(n)^(1+1/n). Namely b(n)^(1/n) is a strictly decreasing function of n.
If in the definition instead of the sequence {p | p and p+2n are primes} we set {p | p is prime and nextprime(p)=p+2n} then it seems that except for n=3 all terms of the new sequence {c(n)} are equal to 1 and for n=3, c(3)=7746. Note that c(3)=7746 means that the sequence {p | p is prime and nextprime(p)=p+6} = A031924 has this property: For all k >= 7746, A031924(k+1)^(1/(k+1)) < A031924(k)^(1/k).
		

Crossrefs

A054902 Composite numbers n such that sigma(n)+12 = sigma(n+12).

Original entry on oeis.org

65, 170, 209, 1394, 3393, 4407, 4556, 11009, 13736, 27674, 38009, 38845, 47402, 76994, 157994, 162393, 184740, 186686, 209294, 680609, 825359, 954521, 1243574, 2205209, 3515609, 4347209, 5968502, 6539102, 6916241, 8165294, 10352294, 10595009, 10786814
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Examples

			n = 65, sigma(65)+12 = 84+12 = 96 = sigma(65+12) = sigma(77).
n = 11009, sigma(11009)+12 = 11220+12 = 11232 = sigma(11009+12) = sigma(11021).
		

Crossrefs

Complement of A046133 with respect to A015917.

Programs

  • PARI
    isok(n) = !isprime(n) && ((sigma(n)+12) == sigma(n+12)); \\ Michel Marcus, Dec 18 2013

Extensions

More terms from Jud McCranie, May 24 2000
Three more terms from Michel Marcus, Dec 18 2013

A054904 x = a(n) is the smallest composite number such that sigma(x+6n) = sigma(x)+6n, where sigma = A000203.

Original entry on oeis.org

104, 65, 20, 80, 44, 125, 45, 63, 40, 99, 56, 70, 296, 125, 88, 110, 104, 145, 212, 182, 80, 170, 333, 105, 369, 185, 184, 135, 180, 301, 356, 185, 1859, 329, 176, 195, 4916, 434, 612, 287, 140, 185, 776, 255, 524, 413, 344, 205, 272, 329, 567, 215, 320, 469
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

If sigma(x+d) = sigma(x)+d and d = 6k, then composite solutions seem to be more frequent and arise sooner.
a(725) > 3*10^11 (if it exists). - Donovan Johnson, Sep 23 2013

Examples

			n = 20, 6n = 120, a(20) = 182, sigma(182)+120 = 336+120 = 456 = sigma(182+120) = sigma(302).
		

Crossrefs

Programs

  • Mathematica
    Table[x = 4; While[Nand[CompositeQ@ x, DivisorSigma[1, x + 6 n] == DivisorSigma[1, x] + 6 n], x++]; x, {n, 54}] (* Michael De Vlieger, Feb 18 2017 *)
  • PARI
    /* finds first 696 terms */ mx=7695851; s=vector(mx); for(j=4, mx, if(isprime(j)==0, s[j]=sigma(j))); for(n=1, 696, n6=n*6; for(x=4, 7691753, if(s[x]>0, if(s[x+n6]==s[x]+n6, write("b054904.txt", n " " x); next(2))))) /* Donovan Johnson, Sep 23 2013 */

Formula

sigma(x+6n) = sigma(x)+6n, a(n) = min(x) and it is composite.

A252089 Primes p such that p + 26 is prime.

Original entry on oeis.org

3, 5, 11, 17, 41, 47, 53, 71, 83, 101, 113, 131, 137, 167, 173, 197, 251, 257, 281, 311, 347, 353, 383, 431, 461, 521, 587, 593, 617, 647, 683, 701, 743, 761, 797, 827, 857, 881, 911, 941, 971, 983, 1013, 1061, 1091, 1097, 1103, 1187, 1223, 1277, 1301, 1373
Offset: 1

Views

Author

Vincenzo Librandi, Dec 14 2014

Keywords

Examples

			17 is in this sequence because 17+26 = 43 is prime.
431 is in this sequence because 431+26 = 457 is prime.
		

Crossrefs

Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), this sequence (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), A156104 (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [NthPrime(n): n in [1..250] | IsPrime(NthPrime(n)+26)];
  • Mathematica
    Select[Prime[Range[200]], PrimeQ[# + 26] &]

A054903 Composite numbers n such that sigma(n)+6 = sigma(n+6), where sigma=A000203.

Original entry on oeis.org

104, 147, 596, 1415, 4850, 5337, 370047, 1630622, 35020303, 120221396, 3954451796, 742514284703
Offset: 1

Views

Author

Labos Elemer, May 23 2000

Keywords

Comments

Complement of A023201 with respect to A015914.
Intersection of A015914 and A018252.
Below 1000000 there are only 7 such composite numbers, compared with more than 16000 primes.
a(13) > 10^13. - Giovanni Resta, Jul 11 2013

Examples

			n=104, sigma(104)+6 = 210+6 = 216 = sigma(104+6) = sigma(110).
a(4) = 1415 = 5*283, 1415+6 = 1421 = 7*7*29:
sigma(1415) = 1+5+283+1415 = 1704,
sigma(1421) = 1+7+29+49+203+1421 = 1710 = sigma(1415)+6.
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 104, p. 37, Ellipses, Paris 2008.

Crossrefs

Programs

Extensions

More terms from Jud McCranie, May 25 2000
New definition from Reinhard Zumkeller, Jan 27 2009
Edited by N. J. A. Sloane, Jan 31 2009 at the suggestion of R. J. Mathar.
a(12) from Giovanni Resta, Jul 11 2013

A231608 Table whose n-th row consists of primes p such that p + 2n is also prime, read by antidiagonals.

Original entry on oeis.org

3, 3, 5, 5, 7, 11, 3, 7, 13, 17, 3, 5, 11, 19, 29, 5, 7, 11, 13, 37, 41, 3, 7, 13, 23, 17, 43, 59, 3, 5, 11, 19, 29, 23, 67, 71, 5, 7, 17, 17, 31, 53, 31, 79, 101, 3, 11, 13, 23, 19, 37, 59, 37, 97, 107, 7, 11, 13, 31, 29, 29, 43, 71, 41, 103, 137
Offset: 1

Views

Author

T. D. Noe, Nov 26 2013

Keywords

Examples

			The following sequences are read by antidiagonals
{3, 5, 11, 17, 29, 41, 59, 71, 101, 107,...}
{3, 7, 13, 19, 37, 43, 67, 79, 97, 103,...}
{5, 7, 11, 13, 17, 23, 31, 37, 41, 47,...}
{3, 5, 11, 23, 29, 53, 59, 71, 89, 101,...}
{3, 7, 13, 19, 31, 37, 43, 61, 73, 79,...}
{5, 7, 11, 17, 19, 29, 31, 41, 47, 59,...}
{3, 5, 17, 23, 29, 47, 53, 59, 83, 89,...}
{3, 7, 13, 31, 37, 43, 67, 73, 97, 151,...}
{5, 11, 13, 19, 23, 29, 41, 43, 53, 61,...}
{3, 11, 17, 23, 41, 47, 53, 59, 83, 89,...}
...
		

Crossrefs

Cf. A020483 (numbers in first column).
Cf. A086505 (numbers on the diagonal).

Programs

  • Maple
    A231608 := proc(n,k)
        local j,p ;
        j := 0 ;
        p := 2;
        while j < k do
            if isprime(p+2*n ) then
                j := j+1 ;
            end if;
            if j = k then
                return p;
            end if;
            p := nextprime(p) ;
        end do:
    end proc:
    for n from 1 to 10 do
        for k from 1 to 10 do
            printf("%3d ",A231608(n,k)) ;
        end do;
        printf("\n") ;
    end do: # R. J. Mathar, Nov 19 2014
  • Mathematica
    nn = 10; t = Table[Select[Range[100*nn], PrimeQ[#] && PrimeQ[# + 2*n] &, nn], {n, nn}]; Table[t[[n-j+1, j]], {n, nn}, {j, n}]

A262086 Numbers k such that phi(k + 10) = phi(k) + 10, where phi(k) = A000010(k) is Euler's totient function.

Original entry on oeis.org

3, 7, 13, 19, 31, 36, 37, 43, 61, 73, 79, 97, 103, 127, 139, 157, 163, 181, 223, 229, 241, 271, 283, 307, 337, 349, 373, 379, 409, 421, 433, 439, 457, 499, 547, 577, 607, 631, 643, 673, 691, 709, 733, 751, 787, 811, 829, 853, 877, 919, 937, 967
Offset: 1

Views

Author

Kevin J. Gomez, Sep 10 2015

Keywords

Comments

The only composite term less than 10^11 is 36. - Giovanni Resta, Sep 14 2015

Examples

			3 is in the sequence since phi(13) = phi(3) + 10.
		

Crossrefs

Cf. A001838 (k=2), A056772 (k=4), A262084 (k=6), A262085 (k=8), this sequence (k=10).

Programs

  • Magma
    [n: n in [1..1000] | EulerPhi(n+10) eq EulerPhi(n)+10]; // Vincenzo Librandi, Sep 11 2015
    
  • Mathematica
    Select[Range@1000, EulerPhi@(# + 10) == EulerPhi[#] + 10 &] (* Vincenzo Librandi, Sep 11 2015 *)
  • PARI
    is(n)=eulerphi(n + 10) == eulerphi(n) + 10 \\ Anders Hellström, Sep 11 2015

A288021 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 4, and p1, p2 are in different decades.

Original entry on oeis.org

7, 19, 37, 67, 79, 97, 109, 127, 229, 277, 307, 349, 379, 397, 439, 457, 487, 499, 739, 757, 769, 859, 877, 907, 937, 967, 1009, 1087, 1279, 1297, 1429, 1447, 1489, 1549, 1567, 1579, 1597, 1609, 1867, 1999, 2137, 2239, 2269, 2347, 2377, 2389, 2437, 2539, 2617, 2659, 2689, 2707, 2749, 2797, 2857
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 7's or 9's.

Examples

			7 is in this sequence since pair (7,11) is the first with difference 4 spanning a multiple of 10.
		

Crossrefs

Programs

  • Mathematica
    a288021[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==4&]]
    a288021[3000] (* data *)

A288022 Prime p1 of consecutive primes p1, p2, where p2 - p1 = 6, and p1, p2 are in different decades.

Original entry on oeis.org

47, 157, 167, 257, 367, 557, 587, 607, 647, 677, 727, 947, 977, 1097, 1117, 1187, 1217, 1367, 1657, 1747, 1777, 1907, 1987, 2207, 2287, 2417, 2467, 2677, 2837, 2897, 2957, 3307, 3407, 3607, 3617, 3637, 3727, 3797, 4007, 4357, 4457, 4507, 4597, 4657, 4937, 4987
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 04 2017

Keywords

Comments

The unit digits of the numbers in the sequence are 7's.
Number of terms < 10^k: 0, 0, 1, 13, 81, 565, 4027, 30422, 237715, ... - Muniru A Asiru, Jan 09 2018

Examples

			47 is in the sequence since pair (47,53) is the first with difference 6 spanning a multiple of 10.
		

Crossrefs

Programs

  • GAP
    P:=Filtered([1..20000], IsPrime);
    P1:=List(Filtered(Filtered(List([1..Length(P)-1],n->[P[n],P[n+1]]),i->i[2]-i[1]=6),j->j[1] mod 5=2),k->k[1]); # Muniru A Asiru, Jul 08 2017
  • Maple
    for n from 1 to 2000 do if [ithprime(n+1)-ithprime(n), ithprime(n) mod 5] = [6,2] then print(ithprime(n)); fi; od; # Muniru A Asiru, Jan 19 2018
  • Mathematica
    a288022[n_] := Map[Last, Select[Map[{NextPrime[#, 1], NextPrime[#, -1]}&, Range[10, n, 10]], First[#]-Last[#]==6&]]
    a288022[3000] (* data *)
Previous Showing 11-20 of 33 results. Next