cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A190782 Triangle T(n,k), read by rows, of the coefficients of x^k in the expansion of Sum_(m=0..n) binomial(x,m) = (a(k)*x^k)/n!, n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 5, 0, 1, 24, 14, 11, -2, 1, 120, 94, 5, 25, -5, 1, 720, 444, 304, -75, 55, -9, 1, 5040, 3828, 364, 1099, -350, 112, -14, 1, 40320, 25584, 15980, -4340, 3969, -1064, 210, -20, 1
Offset: 0

Views

Author

Mokhtar Mohamed, Dec 29 2012

Keywords

Comments

There is a strong relation between this triangle and triangle A048994 which deals with the binomial (x,n), this triangle being dealing with the summation of this binomial.
Apparently A054651 with reversed rows. - Mathew Englander, May 17 2014

Examples

			Triangle begins:
n\k     0       1       2       3       4       5       6      7     8
0       1
1       1       1
2       2       1       1
3       6       5       0        1
4      24      14      11       -2      1
5     120      94       5       25     -5       1
6     720     444     304      -75     55      -9       1
7    5040    3828     364     1099   -350     112     -14      1
8   40320   25584   15980    -4340   3969   -1064     210    -20     1
...
		

Crossrefs

T(2*n,n) gives A347987.

Programs

  • Mathematica
    row[n_] := CoefficientList[ Series[ Sum[ Binomial[x, m], {m, 0, n}], {x, 0, n}], x]*n!; Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 04 2013 *)

Formula

T(n,k) = T(n-1,k)+ T(n-1,k-1)- T(n-2,k-1)*(n-1)+ T(n-2,k)*(n-1)^2, T(n,n)=1, T(n,0)= n! for n >= 0.
T(n,k) = T(n-1,k)*n + (A048994(n,k)), T(n,n)= 1, T(n,0)= n! for n>= 0.
E.g.f. of column k: (log(1 + x))^k/(k! * (1 - x)). - Seiichi Manyama, Sep 26 2021
T(n, k) = Sum_{i=0..n-k} Stirling1(i+k, k)*n!/(i+k)!. - Igor Victorovich Statsenko, May 27 2024

A075830 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) = (b(n)*x + c(n))/(a(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

0, 1, 1, 5, 7, 47, 37, 319, 533, 1879, 1627, 20417, 18107, 263111, 237371, 52279, 95549, 1768477, 1632341, 33464927, 155685007, 166770367, 156188887, 3825136961, 3602044091, 19081066231, 18051406831, 57128792093, 7751493599
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n)-n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]
From Petros Hadjicostas, May 05 2020: (Start)
Given x > 0, u(n) = (A075827(n)*x + A075828(n))/(a(n)*x + A075829(n)) = (b(n)*x + c(n))/(a(n)*x + d(n)) with gcd(gcd(b(n), c(n)), gcd(a(n), d(n))) = 1 for each n >= 1.
Conjecture 1: Define the sequences (A(n): n >= 1) and (B(n): n >= 1) by A(n+1) = n^2/A(n) + 1 for n >= 2 with A(1) = infinity and A(2) = 1, and B(n+1) = n^2/B(n) + 1 for n >= 3 with B(1) = 0, B(2) = infinity, and B(3) = 1. Then a(n) = denominator(A(n)), b(n) = numerator(A(n)), c(n) = numerator(B(n)), and d(n) = denominator(B(n)) (assuming infinity = 1/0). Also, gcd(a(n), d(n)) = 1.
In 2002, Michael Somos claimed that d(n) = A024168(n-1)/gcd(A024168(n-1), A024168(n)) for n >= 2. In 2006, N. J. A. Sloane claimed that a(n) = A058313(n-1) for n >= 2 while Alexander Adamchuk claimed that d(n) = A058312(n-1) - A058313(n-1) for n >= 2.
Conjecture 2: a(n) = A024167(n-1)/gcd(A024167(n-1), A024167(n)).
Conjecture 3: b(p) = a(p+1) for p = 1 or prime. In general, it seems that b(n) = A048671(n)*a(n+1) for all n for which A048671(n) < n.
Conjecture 4: c(n) = n*(a(n) + d(n)) - b(n) for n >= 1. (End)
All conjectures are proved in the link below except for the second part of Conjecture 3. - Petros Hadjicostas, May 21 2020

Crossrefs

Apart from the leading term, same as A058313.
Cf. A075827 (= b), A075828 (= c), A075829 (= d).

Programs

  • PARI
    u(n)=if(n<2,x,(n-1)^2/u(n-1)+1);
    a(n)=polcoeff(denominator(u(n)),1,x);

Extensions

Name edited by Petros Hadjicostas, May 04 2020

A334958 GCD of consecutive terms of the factorial times the alternating harmonic series.

Original entry on oeis.org

1, 1, 1, 2, 2, 12, 12, 48, 144, 1440, 1440, 17280, 17280, 241920, 18144000, 145152000, 145152000, 2612736000, 2612736000, 10450944000, 219469824000, 4828336128000, 4828336128000, 115880067072000, 579400335360000, 15064408719360000, 135579678474240000, 26573616980951040000, 26573616980951040000
Offset: 1

Views

Author

Petros Hadjicostas, May 17 2020

Keywords

Comments

For n = 1..14, we have a(n) = A025527(n), but a(15) = 18144000 <> 3628800 = A025527(15).
It appears that A025527(n) | a(n) for all n >= 1 and A025527(n) = a(n) for infinitely many n. In addition, it seems that a(n)/a(n-1) = A048671(n) for infinitely many n >= 2. However, I have not established these claims.
This sequence appears in formulas for sequences A075827, A075828, A075829, and A075830 (the first one of which was established in 2002 by Michael Somos).
Conjecture: a(n) = n! * Product_{p <= n} p^min(0, v_p(H'(n))), where the product ranges over primes p, H'(n) = Sum_{k=1..n} (-1)^(k+1)/k, and v_p(r) is the p-adic valuation of rational r (checked for n < 1100).

Examples

			A024167(4) = 4!*(1 - 1/2 + 1/3 - 1/4) = 14, A024167(5) = 5!*(1 - 1/2 + 1/3 - 1/4 + 1/5) = 94, A024168(4) = 4!*(1/2 - 1/3 + 1/4) = 10, and A024168(5) = 5!*(1/2 - 1/3 + 1/4 - 1/5) = 26. Then a(4) = gcd(14, 94) = gcd(10, 26) = gcd(14, 4!) = gcd(10, 4!) = gcd(14, 10) = 2.
		

Crossrefs

Cf. A056612 (similar sequence for the harmonic series).

Programs

  • Maple
    b:= proc(n) b(n):= (-(-1)^n/n +`if`(n=1, 0, b(n-1))) end:
    a:= n-> (f-> igcd(b(n)*f, f))(n!):
    seq(a(n), n=1..30);  # Alois P. Heinz, May 18 2020
  • Mathematica
    b[n_] := b[n] = -(-1)^n/n + If[n == 1, 0, b[n-1]];
    a[n_] := GCD[b[n] #, #]&[n!];
    Array[a, 30] (* Jean-François Alcover, Oct 27 2020, after Alois P. Heinz *)
  • SageMath
    def A():
        a, b, n = 1, 1, 2
        while True:
            yield gcd(a, b)
            b, a = a, a + b * n * n
            n += 1
    a = A(); print([next(a) for  in range(29)]) # _Peter Luschny, May 19 2020

Formula

a(n) = gcd(A024167(n+1), A024167(n)) = gcd(A024168(n+1), A024168(n)) = gcd(A024167(n), n!) = gcd(A024168(n), n!) = gcd(A024167(n), A024168(n)).

A142980 a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1) + (n + 1)^2*a(n).

Original entry on oeis.org

1, 5, 29, 190, 1414, 11820, 110004, 1129200, 12686256, 154896480, 2043108000, 28958014080, 438997622400, 7088892491520, 121487996448000, 2202440792832000, 42113131054848000, 847071044402688000, 17880009683784192000, 395192695448291328000, 9127967350755133440000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 2 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n), which arises when accelerating the convergence of Mercator's series for the constant log(2). See A142979 for remarks on the general case.

Crossrefs

Programs

  • Maple
    p := n -> 2*n^2+ 2*n+1: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)
  • Mathematica
    Module[{a, n}, RecurrenceTable[{a[n+2] == 5*a[n+1] + (n+1)^2*a[n], a[1] == 1, a[2] == 5}, a, {n, 25}]] (* Paolo Xausa, Dec 12 2024 *)

Formula

a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = 2*n^2 + 2*n + 1 = A001844(n) is the Ehrhart polynomial for the 2-dimensional cross polytope (a square).
Recurrence: a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1) + (n+1)^2*a(n).
The sequence b(n) := n!*p(n) satisfies the same recurrence with b(1) = 5, b(2) = 26.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5 + 1^2/(5 + 2^2/(5 + 3^2/(5 + ... + (n-1)^2/5)))), for n >= 2.
The behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = 1/(5 + 1^2/(5 + 2^2/(5 + 3^2/(5 + ... + n^2/(5 + ...))))) = Sum_{k >= 1} (-1)^(k+1)/(k*(4*k^4 + 1)) = log(2) - (1 - 1/2); the final equality is a result of Glaisher.
Thus a(n) ~ c*n^2*n! as n -> oo, where c = 2*log(2) - 1.
From Peter Bala, Dec 09 2024: (Start)
E.g.f.: A(x) = ((1 + x)^2 *log(1 + x) - 2*x^2)/(1 - x)^3 satisfies the differential equation 1 + (x + 5)*A(x) + (x^2 - 1)*A(x)' with A(0) = 0.
Sum_{k = 1..n} Stirling2(n, k)*a(k) = A135148(n+1). (End)

A281964 Real part of n!*Sum_{k=1..n} i^(k-1)/k, where i is sqrt(-1).

Original entry on oeis.org

1, 2, 4, 16, 104, 624, 3648, 29184, 302976, 3029760, 29698560, 356382720, 5111976960, 71567677440, 986336870400, 15781389926400, 289206418636800, 5205715535462400, 92506221468057600, 1850124429361152000, 41285515024760832000, 908281330544738304000
Offset: 1

Views

Author

Daniel Suteu, Feb 06 2017

Keywords

Examples

			For n=5, a(5) = 104, which is the real part of 5!*(1/1 + i/2 - 1/3 - i/4 + 1/5) = 104+30*i.
		

Crossrefs

The corresponding imaginary part is A282132.

Programs

  • PARI
    a(n) = real(n!*sum(k=1, n, I^(k-1)/k));
    
  • PARI
    first(n) = x='x+O('x^(n+1)); Vec(serlaplace(atan(x)/(1 - x))) \\ Iain Fox, Dec 19 2017

Formula

a(n) ~ Pi/4 * n!.
a(1) = 1, a(n+1) = a(n)*(n+1) + n!*cos(Pi*n/2).
E.g.f.: arctan(x)/(1 - x). - Ilya Gutkovskiy, Dec 19 2017

A075827 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(a(n)*x + b(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

1, 1, 5, 14, 47, 222, 319, 2132, 5637, 16270, 20417, 217284, 263111, 3323194, 3920925, 764392, 1768477, 29382138, 33464927, 622740028, 3502177707, 3436155514, 3825136961, 86449058184, 95405331155, 469336577606, 514159128837, 1519292745404, 236266661971, 6755272778730, 7313175618421
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n) - n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]

Crossrefs

Cf. A075828 (= b), A075829 (= d), A075830 (= c).

Programs

  • PARI
    u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
    a(n) = polcoeff(numerator(u(n)), 1, x);
    for(n=1, 30, print1(a(n)", ")) \\ Petros Hadjicostas, May 06 2020

Formula

From Petros Hadjicostas, May 18 2020: (Start)
a(n) = A024167(n)/gcd(A024167(n), A024167(n-1)) = A024167(n)/A334958(n-1) for n >= 2. (Cf. Michael Somos's result for d = A075829 using A024168.)
u(n) = (A024167(n)*x + A024168(n))/(A024167(n-1)*x + A024168(n-1)) for n >= 2. (End)

Extensions

Name edited by Petros Hadjicostas, May 06 2020
More terms from Michel Marcus, Aug 01 2025

A075828 Let u(1) = x and u(n+1) = (n^2/u(n)) + 1 for n >= 1; then a(n) is such that u(n) =(b(n)*x + a(n))/(c(n)*x + d(n)) (in lowest terms) and a(n), b(n), c(n), d(n) are positive integers.

Original entry on oeis.org

0, 1, 1, 10, 13, 138, 101, 1228, 1923, 8930, 7303, 115356, 97249, 1721846, 1484475, 388760, 681971, 14725926, 13093585, 308430212, 1386466053, 1685280806, 1529091919, 42052434936, 38450390845, 226713176794, 208661769963
Offset: 1

Views

Author

Benoit Cloitre, Oct 14 2002

Keywords

Comments

For x real <> 1 - 1/log(2), Lim_{n -> infinity} abs(u(n) - n) = abs((x - 1)/(1 + (x - 1)*log(2))). [Corrected by Petros Hadjicostas, May 18 2020]

Crossrefs

Cf. A075827 (= b), A075829 (= d), A075830 (= c).

Programs

  • PARI
    u(n) = if(n<2, x, (n-1)^2/u(n-1)+1);
    a(n) = polcoeff(numerator(u(n)), 0 ,x)

Formula

From Petros Hadjicostas, May 18 2020: (Start)
a(n) = A024168(n)/gcd(A024168(n), A024168(n-1)) = A024168(n)/A334958(n) for n >= 2. (Cf. Michael Somos's claim for d = A075829 using A024168.)
u(n) = (A024167(n)*x + A024168(n))/(A024167(n-1)*x + A024168(n-1)) for n >= 2. (End)

Extensions

Name edited by Petros Hadjicostas, May 06 2020

A142981 a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1) + (n+1)^2*a(n).

Original entry on oeis.org

1, 7, 53, 434, 3886, 38052, 406260, 4708368, 58959216, 794092320, 11454567840, 176267145600, 2883327788160, 49972442123520, 914939341344000, 17648374867200000, 357763095454464000, 7604722004802048000, 169148296960860672000, 3929342722459564032000, 95164717841561217024000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 3 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n), which arises when accelerating the convergence of Mercator's series for the constant log(2). See A142979 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Maple
    p := n -> (4*n^3+6*n^2+8*n+3)/3: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)
  • Mathematica
    Module[{a, n}, RecurrenceTable[{a[n+2] == 7*a[n+1] + (n+1)^2*a[n], a[1] == 1, a[2] == 7}, a, {n, 25}]] (* Paolo Xausa, Dec 12 2024 *)

Formula

a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = (4*n^3 + 6*n^2 + 8*n + 3)/3 = A001845(n) is the Ehrhart polynomial for the 3-dimensional cross polytope (the octahedron).
Recurrence: a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1) + (n + 1)^2*a(n). The sequence b(n):= n!*p(n) satisfies the same recurrence with b(1) = 7, b(2) = 50.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(7 + 1^2/(7 + 2^2/(7 + 3^2/(7 + ... + (n-1)^2/7)))), for n >= 2.
The behavior of a(n) for large n is given by limit_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k*p(k-1)*p(k)) = 1/(7 + 1^2/(7 + 2^2/(7 + 3^2/(7 + ... + n^2/(7 + ...))))) = (1 - 1/2 + 1/3) - log(2); the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 29]). Thus a(n) ~ c*n^3*n! as n -> oo, where c = (10 - 12*log(2))/9.
E.g.f.: A(x) = (2*x*(4*x^2 + 3*x + 3) - 3*(x + 1)^3*log(1 + x) )/(3*(1 - x)^4) satisfies the differential equation 1 + (x + 7)*A(x) + (x^2 - 1)*A'(x) = 0 with A(0) = 0. - Peter Bala, Dec 09 2024

A142982 a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1) + (n + 1)^2*a(n).

Original entry on oeis.org

1, 9, 85, 846, 8974, 101916, 1240308, 16156656, 224789616, 3331795680, 52465122720, 875333381760, 15432978107520, 286828144485120, 5606317009440000, 114993185594112000, 2470155824763648000, 55464433059571200000, 1299510384759562752000, 31718253797341267968000
Offset: 1

Views

Author

Peter Bala, Jul 17 2008

Keywords

Comments

This is the case m = 4 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n), which arises when accelerating the convergence of Mercator's series for the constant log(2). See A142979 for remarks on the general case.

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.

Crossrefs

Programs

  • Maple
    p := n -> (2*n^4+4*n^3+10*n^2+8*n+3)/3: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20);
  • Mathematica
    Module[{a, n}, RecurrenceTable[{a[n+2] == 9*a[n+1] + (n+1)^2*a[n], a[1] == 1, a[2] == 9}, a, {n, 25}]] (* Paolo Xausa, Dec 12 2024 *)

Formula

a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = (2*n^4 + 4*n^3 + 10*n^2 + 8*n + 3)/3 = A001846(n) is the Ehrhart polynomial for the 4-dimensional cross polytope (the 16-cell).
Recurrence: a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1) + (n + 1)^2*a(n).
The sequence b(n) := n!*p(n) satisfies the same recurrence with b(1) = 9, b(2) = 82.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(9 + 1^2/(9 + 2^2/(9 + 3^2/(9 + ... + (n-1)^2/9)))), for n >= 2.
The behavior of a(n) for large n is given by limit_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k*p(k-1)*p(k)) = 1/(9 + 1^2/(9 + 2^2/(9 + 3^2/(9 + ... + n^2/(9 + ...))))) = log(2) - (1 - 1/2 + 1/3 - 1/4); the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 29]).
Thus a(n) ~ c*n^4*n! as n -> oo, where c = (12*log(2) - 7)/18.
E.g.f.: A(x) = (3*(x + 1)^4*log(1 + x) - 4*x^2*(2*x^2 + 2*x + 3))/(3*(1 - x)^5) satisfies the differential equation 1 + (x + 9)*A(x) + (x^2 - 1)*A'(x) = 0 with A(0) = 0. - Peter Bala, Dec 09 2024

A080959 Square array of coefficients of binomial polynomials, read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 3, 1, 5, 4, 0, 11, 14, 5, -2, 20, 14, 94, 6, -5, 34, -10, 214, 444, 7, -9, 55, -74, 454, 444, 3828, 8, -14, 85, -200, 974, -636, 8868, 25584, 9, -20, 126, -416, 2024, -4236, 21468, 25584, 270576, 10, -27, 180, -756, 3968, -13056, 56748, -55056, 633456, 2342880, 11, -35, 249, -1260, 7308, -31632, 146208, -377616, 1722096, 2342880, 29400480
Offset: 1

Views

Author

Paul Barry, Mar 01 2003

Keywords

Examples

			Array, A(n, k), begin as:
   1,   1,   5,    14,    94,     444,    3828,      25584,     270576, ... A024167;
   2,   1,  11,    14,   214,     444,    8868,      25584,     633456, ... A080958;
   3,   0,  20,   -10,   454,    -636,   21468,     -55056,    1722096, ... ;
   4,  -2,  34,   -74,   974,   -4236,   56748,    -377616,    5471856, ... ;
   5,  -5,  55,  -200,  2024,  -13056,  146208,   -1325136,   16902576, ... ;
   6,  -9,  85,  -416,  3968,  -31632,  348816,   -3695952,   47457072, ... ;
   7, -14, 126,  -756,  7308,  -67032,  766296,   -9004752,  120758832, ... ;
   8, -20, 180, -1260, 12708, -129672, 1563336,  -19925712,  281929392, ... ;
   9, -27, 249, -1974, 21018, -234252, 2993436,  -40917312,  611923392, ... ;
  10, -35, 335, -2950, 33298, -400812, 5431116,  -79073472, 1248697152, ... ;
  11, -44, 440, -4246, 50842, -655908, 9411204, -145250688, 2417424768, ... ;
Antidiagonals, T(n, k), begin as:
   1;
   2,   1;
   3,   1,   5;
   4,   0,  11,    14;
   5,  -2,  20,    14,   94;
   6,  -5,  34,   -10,  214,    444;
   7,  -9,  55,   -74,  454,    444,   3828;
   8, -14,  85,  -200,  974,   -636,   8868,   25584;
   9, -20, 126,  -416, 2024,  -4236,  21468,   25584,  270576;
  10, -27, 180,  -756, 3968, -13056,  56748,  -55056,  633456, 2342880;
  11, -35, 249, -1260, 7308, -31632, 146208, -377616, 1722096, 2342880, 29400480;
		

Crossrefs

Columns: A000027 (k=1), A080956 (k=2), A080957 (k=3).

Programs

  • Magma
    A:= func< n,k | Factorial(k)*(&+[(-1)^(j+1)*Binomial(n+j,j)/j: j in [1..k]]) >;
    A080959:= func< n,k | A(n-k,k) >;
    [A080959(n,k): k in [1..n], n in [0..12]]; // G. C. Greubel, May 11 2025
    
  • Mathematica
    A[n_, k_]:= k!*Sum[(-1)^(j+1)*Binomial[n+j,j]/j, {j,k}];
    A080959[n_, k_]:= A[n-k, k];
    Table[A080959[n,k], {n,0,12}, {k,n}]//Flatten (* G. C. Greubel, May 11 2025 *)
  • SageMath
    def A(n,k): return factorial(k)*sum((-1)^(j+1)*binomial(n+j,j)/j for j in range(1,k+1))
    def A080959(n,k): return A(n-k,k)
    print(flatten([[A080959(n,k) for k in range(1,n+1)] for n in range(13)])) # G. C. Greubel, May 11 2025

Formula

A(n, k) = k!*Sum_{j=1..k} (-1)^(j+1)*binomial(n+j, j)/j (array).
T(n, k) = A(n-k, k) (antidiagonals).
Previous Showing 11-20 of 37 results. Next