cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 66 results. Next

A082365 A Jacobsthal number sequence.

Original entry on oeis.org

1, 11, 85, 683, 5461, 43691, 349525, 2796203, 22369621, 178956971, 1431655765, 11453246123, 91625968981, 733007751851, 5864062014805, 46912496118443, 375299968947541, 3002399751580331, 24019198012642645, 192153584101141163
Offset: 0

Views

Author

Paul Barry, Apr 09 2003

Keywords

Comments

A trisection of A024495. - Paul Curtz, Nov 18 2007

Crossrefs

Programs

  • Magma
    [4*8^n/3-(-1)^n/3: n in [0..30]]; // Vincenzo Librandi, Aug 13 2011
    
  • Mathematica
    f[n_] := (4*8^n - (-1)^n)/3; Array[f, 20, 0] (* Robert G. Wilson v, Aug 13 2011 *)
    LinearRecurrence[{7,8},{1,11},20] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    vector(30, n, n--; (4*8^n -(-1)^n)/3) \\ G. C. Greubel, Sep 16 2018

Formula

a(n) = (4*8^n -(-1)^n)/3.
a(n) = J(3*n+2) = A001045(3*n)/3.
a(n) = 4*A015565(n)+A015565(n+1).
From Philippe Deléham, Nov 19 2007: (Start)
a(0)=1, a(1)=11, a(n+1) = 7*a(n) + 8*a(n-1) for n>=1 .
G.f.: (1+4*x)/(1-7*x-8*x^2). (End)

A167762 a(n) = 2*a(n-1)+3*a(n-2)-6*a(n-3) starting a(0)=a(1)=0, a(2)=1.

Original entry on oeis.org

0, 0, 1, 2, 7, 14, 37, 74, 175, 350, 781, 1562, 3367, 6734, 14197, 28394, 58975, 117950, 242461, 484922, 989527, 1979054, 4017157, 8034314, 16245775, 32491550, 65514541, 131029082, 263652487, 527304974, 1059392917, 2118785834, 4251920575, 8503841150
Offset: 0

Views

Author

Paul Curtz, Nov 11 2009

Keywords

Comments

Inverse binomial transform yields two zeros followed by A077917 (a signed variant of A127864).
a(n) mod 10 is zero followed by a sequence with period length 8: 0, 1, 2, 7, 4, 7, 4, 5 (repeat).
a(n) is the number of length n+1 binary words with some prefix w such that w contains three more 1's than 0's and no prefix of w contains three more 0's than 1's. - Geoffrey Critzer, Dec 13 2013
From Gus Wiseman, Oct 06 2023: (Start)
Also the number of subsets of {1..n} with two distinct elements summing to n + 1. For example, the a(2) = 1 through a(5) = 14 subsets are:
{1,2} {1,3} {1,4} {1,5}
{1,2,3} {2,3} {2,4}
{1,2,3} {1,2,4}
{1,2,4} {1,2,5}
{1,3,4} {1,3,5}
{2,3,4} {1,4,5}
{1,2,3,4} {2,3,4}
{2,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
The complement is counted by A038754.
Allowing twins gives A167936, complement A108411.
For n instead of n + 1 we have A365544, complement A068911.
The version for all subsets (not just pairs) is A366130.
(End)

Crossrefs

First differences are A167936, complement A108411.

Programs

  • Mathematica
    LinearRecurrence[{2,3,-6},{0,0,1},40] (* Harvey P. Dale, Sep 17 2013 *)
    CoefficientList[Series[x^2/((2 x - 1) (3 x^2 - 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 17 2013 *)
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],n+1]&]],{n,0,10}] (* Gus Wiseman, Oct 06 2023 *)

Formula

a(n) mod 9 = A153130(n), n>3 (essentially the same as A154529, A146501 and A029898).
a(n+1)-2*a(n) = 0 if n even, = A000244((1+n)/2) if n odd.
a(2*n) = A005061(n). a(2*n+1) = 2*A005061(n).
G.f.: x^2/((2*x-1)*(3*x^2-1)). a(n) = 2^n - A038754(n). - R. J. Mathar, Nov 12 2009
G.f.: x^2/(1-2*x-3*x^2+6*x^3). - Philippe Deléham, Nov 11 2009

Extensions

Edited and extended by R. J. Mathar, Nov 12 2009

A049017 Expansion of 1/((1-x)^7 - x^7).

Original entry on oeis.org

1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975, 9714753412, 19818498700, 40199107690
Offset: 0

Views

Author

Keywords

Comments

Differs for n >= 7 (1717 vs. 1716) from A000579(n+6) = binomial(n+6,6); see also row 6 of A027555, A059481 and A213808. - M. F. Hasler, Mar 05 2017

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), this sequence (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    CoefficientList[Series[1/((1-x)^7-x^7),{x,0,30}],x]  (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    Vec(1/((1-x)^7-x^7)+O(x^99)) \\ M. F. Hasler, Mar 05 2017
    
  • SageMath
    def A049017_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^7 - x^7) ).list()
    A049017_list(40) # G. C. Greubel, Apr 11 2023

Formula

G.f.: 1/((1-x)^7 - x^7) = 1/((1-2*x)*(1-5*x+11*x^2-13*x^3+9*x^4-3*x^5+x^6)).

A290995 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 8, 36, 120, 330, 792, 1716, 3432, 6436, 11456, 19584, 32640, 54264, 93024, 170544, 341088, 735472, 1653632, 3749760, 8386560, 18289440, 38724480, 79594560, 159189120, 311058496, 597137408, 1133991936, 2147450880, 4089171840
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), A049017 (m=7), this sequence (m=8), A306939 (m=9).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0,0] cat Coefficients(R!( x^7/((1-x)^8 - x^8) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s^8;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290995 *)
  • PARI
    concat(vector(7), Vec(x^7 / ((1 - 2*x)*(1 - 2*x + 2*x^2)*(1 - 4*x + 6*x^2 - 4*x^3 + 2*x^4)) + O(x^50))) \\ Colin Barker, Aug 22 2017
    
  • SageMath
    def A290995_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^7/((1-x)^8 - x^8) ).list()
    A290995_list(60) # G. C. Greubel, Apr 11 2023

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) for n >= 9.
G.f.: x^7 / ((1 - 2*x)*(1 - 2*x + 2*x^2)*(1 - 4*x + 6*x^2 - 4*x^3 + 2*x^4)). - Colin Barker, Aug 22 2017
G.f.: x^7/((1-x)^8 - x^8). - G. C. Greubel, Apr 11 2023

A192080 Expansion of 1/((1-x)^6 - x^6).

Original entry on oeis.org

1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252
Offset: 0

Views

Author

Bruno Berselli, Jun 23 2011

Keywords

Crossrefs

Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), A024495 (m=3), A000749 (m=4), A049016 (m=5), this sequence (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(),m); Coefficients(R!(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))));
    
  • Mathematica
    CoefficientList[Series[1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), {x,0,50}], x] (* Vincenzo Librandi, Oct 15 2012 *)
    LinearRecurrence[{6,-15,20,-15,6},{1,6,21,56,126},30] (* Harvey P. Dale, Feb 22 2017 *)
  • Maxima
    makelist(coeff(taylor(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)), x, 0, n), x, n), n, 0, 29);
    
  • PARI
    Vec(1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2))+O(x^99)) \\ Charles R Greathouse IV, Jun 23 2011
    
  • SageMath
    def A192080_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x)^6-x^6) ).list()
    A192080_list(51) # G. C. Greubel, Apr 11 2023

Formula

a(n) = abs(A006090(n)) = (-1)^n * A006090(n).
G.f.: 1/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)).
From G. C. Greubel, Apr 11 2023: (Start)
a(n) = (2^(n+5) + A010892(n) - 2*A010892(n-1) - 27*(A057083(n) - 2*A057083(n-1)))/6.
a(n) = (2^(n+5) + A057079(n+2) - 27*A057681(n+1))/6. (End)

A092220 Expansion of x*(1-x)/ ((1+x)*(1-x+x^2)) in powers of x.

Original entry on oeis.org

0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 0, 1, -1, 0, -1
Offset: 0

Views

Author

Paul Barry, Feb 25 2004

Keywords

Comments

Period 6: repeat [0, 1, -1, 0, -1, 1]. - Joerg Arndt, Aug 28 2024
Transform of the Jacobsthal numbers A001045 under the Riordan array A102587. - Paul Barry, Jul 14 2005
The BINOMIAL transform generates (-1)^(n+1)*A024495(n+1). - R. J. Mathar, Apr 07 2008

Examples

			G.f. = x - x^2 - x^4 + x^5 + x^7 - x^8 - x^10 + x^11 + x^13 - x^14 - x^16 + x^17 + ...
		

Crossrefs

Programs

  • Maple
    seq(2*sin(Pi*n^2/3)/sqrt(3), n=0..100); # Ridouane Oudra, Oct 30 2024
  • Mathematica
    a[ n_] := {1, -1, 0, -1, 1, 0}[[Mod[n, 6, 1]]]; (* Michael Somos, Aug 25 2014 *)
    LinearRecurrence[{0,0,-1},{0,1,-1},120] (* or *) PadRight[{},120,{0,1,-1,0,-1,1}] (* Harvey P. Dale, Mar 30 2016 *)
  • PARI
    {a(n) = [0, 1, -1, 0, -1, 1][n%6 + 1]}; /* Michael Somos, Apr 10 2011 */

Formula

a(n) = 2*cos(Pi*n/3)/3 - 2(-1)^n/3.
Multiplicative with a(2^e) = -1, a(3^e) = 0, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005
From Michael Somos, Apr 10 2011: (Start)
Euler transform of length 6 sequence [-1, 0, -1, 0, 0, 1].
Moebius transform is length 6 sequence [1, -2, -1, 0, 0, 2].
G.f.: x * (1 - x) * (1 - x^3) / (1 - x^6).
a(n) = a(-n), a(n + 3) = -a(n), a(3*n) = 0, for all n in Z. (End)
a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4). - Paul Curtz, Dec 10 2007
a(n) = ( (-1)^floor((n+1)/3) - (-1)^n )/2. - Bruno Berselli, Jul 09 2013
a(n) = S(n-1,-1), n >= 0, with Chebyshev's S-polynomials evaluated at -1 (see A049310). - Wolfdieter Lang, Sep 06 2013
a(n) = A131531(n+2) - A131531(n+1) . - R. J. Mathar, Nov 28 2019
a(n) = A128834(n^2). - Ridouane Oudra, Oct 30 2024
E.g.f.: 2*(exp(x/2)*cos(sqrt(3)*x/2) - cosh(x) + sinh(x))/3. - Stefano Spezia, Oct 31 2024
Dirichlet g.f.: zeta(s) * (1 - 1/2^(s-1)) * (1 - 1/3^s). - Amiram Eldar, Jun 09 2025

A111927 Expansion of x^3 / ((x-1)*(2*x-1)*(x^2-x+1)).

Original entry on oeis.org

0, 0, 0, 1, 4, 10, 21, 42, 84, 169, 340, 682, 1365, 2730, 5460, 10921, 21844, 43690, 87381, 174762, 349524, 699049, 1398100, 2796202, 5592405, 11184810, 22369620, 44739241, 89478484, 178956970, 357913941, 715827882, 1431655764, 2863311529, 5726623060
Offset: 0

Views

Author

Creighton Dement, Aug 21 2005

Keywords

Comments

Binomial transform of sequence (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0). Note: the binomial transform of the sequence (0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0) is A111926; the binomial transform of the sequence (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0) is A024495 (disregarding first two terms, which are both zero).
The sequence relates the calculation of the logarithm of the Twin Prime Constants of order 3 to the sequence of prime zeta functions, see definition 7 in arXiv:0903.2514. - R. J. Mathar, Mar 28 2009

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n, k*3), k=1..n), n=0..33); # Zerinvary Lajos, Oct 23 2007
  • Mathematica
    LinearRecurrence[{4,-6,5,-2},{0,0,0,1},40] (* Harvey P. Dale, Jul 04 2017 *)
  • PARI
    concat(vector(3), Vec(x^3/((x-1)*(2*x-1)*(x^2-x+1)) + O(x^40))) \\ Colin Barker, Feb 10 2017

Formula

a(n+2) - a(n+1) + a(n) = A000225(n).
a(n) - a(n-1) = A024495(n-1).
From Colin Barker, Feb 10 2017: (Start)
a(n) = 2^n/3 + 2*cos((Pi*n)/3)/3 - 1. [Cournot]
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 2*a(n-4) for n > 3. (End)
a(n) = (2^n+A087204(n))/3 - 1. - R. J. Mathar, Aug 07 2017
a(n) = (1/3)*Sum_{k=0..n-1} binomial(n, 3*floor(k/3)+3). - Taras Goy, Jan 26 2025
E.g.f.: (exp(x)*(exp(x) - 3) + 2*exp(x/2)*cos(sqrt(3)*x/2))/3. - Stefano Spezia, Feb 06 2025

A306915 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 3, 4, 8, 1, 4, 6, 8, 16, 1, 5, 10, 11, 16, 32, 1, 6, 15, 20, 21, 32, 64, 1, 7, 21, 35, 36, 42, 64, 128, 1, 8, 28, 56, 70, 64, 85, 128, 256, 1, 9, 36, 84, 126, 127, 120, 171, 256, 512, 1, 10, 45, 120, 210, 252, 220, 240, 342, 512, 1024
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2019

Keywords

Examples

			Square array begins:
     1,   1,   1,   1,   1,    1,    1,    1, ...
     2,   2,   3,   4,   5,    6,    7,    8, ...
     4,   4,   6,  10,  15,   21,   28,   36, ...
     8,   8,  11,  20,  35,   56,   84,  120, ...
    16,  16,  21,  36,  70,  126,  210,  330, ...
    32,  32,  42,  64, 127,  252,  462,  792, ...
    64,  64,  85, 120, 220,  463,  924, 1716, ...
   128, 128, 171, 240, 385,  804, 1717, 3432, ...
   256, 256, 342, 496, 715, 1365, 3017, 6436, ...
		

Crossrefs

Programs

  • Mathematica
    A[n_, k_] := Sum[Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 25 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+k-1,k*j+k-1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i+k-1,k*j+k-1) * binomial(n-i+k-1,k*j+k-1). - Seiichi Manyama, Apr 07 2019

A369408 Irregular triangle read by rows: T(n,k) is the length of the shortest proof for the MIU formal system string (theorem) given by A369173(n,k).

Original entry on oeis.org

1, 4, 2, 2, 11, 5, 8, 5, 8, 3, 9, 9, 6, 9, 5, 6, 9, 6, 3, 6, 3
Offset: 2

Views

Author

Paolo Xausa, Jan 22 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and A369173 for the triangle of the corresponding derivable strings.
The length of the shortest proof for a string (theorem) S is the number of lines of the shortest possible derivation of S.
A369173(n,k) first appears in row T(n,k) - 1 in triangle A368946.

Examples

			Triangle begins:
  [2]  1;
  [3]  4  2  2;
  [4] 11  5  8  5  8  3;
  [5]  9  9  6  9  5  6  9  6  3  6  3;
  ...
For the theorem MUI (301), which is given by A369173(3,1), the shortest derivation from the axiom MI is MI (31) -> MII (311) -> MIIII (31111) -> MIU (301) (4 lines), so T(3,1) = 4.
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A024495 (row lengths), A331536, A368946, A369173, A369410.
Cf. A369586 (proofs), A369587 (number of symbols).

Programs

  • Mathematica
    MIUStringsW3[n_] := Map[FromCharacterCode[# + 48]&, Select[Tuples[{0, 1}, n - 1], ! Divisible[Count[#, 1], 3] &]];
    MIUStepDW3[s_] := DeleteDuplicates[Flatten[Map[{If[StringEndsQ[#, "1"], # <> "0", Nothing], # <> #, StringReplaceList[#, {"111" -> "0", "00" -> ""}]} &, s]]];
    Module[{rowmax = 5, treedepth = 10, tree}, tree = NestList[MIUStepDW3, {"1"}, treedepth]; Map[Quiet[Check[Position[tree, #, {2}][[1,1]], "Not found"]]&, Array[MIUStringsW3, rowmax - 1, 2], {2}]]

Formula

T(n,k) <= A369410(n,k).

A101508 Product of binomial matrix and the Mobius matrix A051731.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 4, 3, 1, 16, 8, 6, 4, 1, 32, 16, 11, 10, 5, 1, 64, 32, 21, 20, 15, 6, 1, 128, 64, 42, 36, 35, 21, 7, 1, 256, 128, 85, 64, 70, 56, 28, 8, 1, 512, 256, 171, 120, 127, 126, 84, 36, 9, 1, 1024, 512, 342, 240, 220, 252, 210, 120, 45, 10, 1, 2048, 1024, 683, 496, 385, 463, 462, 330, 165, 55, 11, 1
Offset: 0

Views

Author

Paul Barry, Dec 05 2004

Keywords

Comments

Row sums are A101509. Diagonal sums are A101510.
The matrix inverse appears to be A128313. - R. J. Mathar, Mar 22 2013
Read as upper triangular matrix, this can be seen as "recurrences in A135356 applied to A023531" [Paul Curtz, Mar 03 2017]. - The columns are: A000079, A131577, A024495, A000749, A139761, ... Column n differs after the (n+1)-th nonzero term on from the binomial coefficients C(k,n). - M. F. Hasler, Mar 05 2017

Examples

			Rows begin
  1;
  2,1;
  4,2,1;
  8,4,3,1;
  16,8,6,4,1;
  ...
		

Programs

  • Maple
    A101508 := proc(n,k)
        a := 0 ;
        for i from 0 to n do
            if modp(i+1,k+1) = 0 then
                a := a+binomial(n,i) ;
            end if;
        end do:
        return a;
    end proc: # R. J. Mathar, Mar 22 2013
  • Mathematica
    t[n_, k_] := Sum[If[Mod[i + 1, k + 1] == 0, Binomial[n, i], 0], {i, 0, n}]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 24 2014 *)
  • PARI
    T(n,k)=sum(i=0,n, if((i+1)%(k+1)==0, binomial(n, i))) \\ M. F. Hasler, Mar 05 2017

Formula

T(n, k) = Sum_{i=0..n} if(mod(i+1, k+1)=0, binomial(n, i), 0).
Rows have g.f. x^k/((1-x)^(k+1)-x^(k+1)).
Previous Showing 21-30 of 66 results. Next