cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A121765 Numbers n such that 6*n-1 is composite while 6*n+1 is prime.

Original entry on oeis.org

6, 11, 13, 16, 21, 26, 27, 35, 37, 46, 51, 55, 56, 61, 62, 63, 66, 68, 73, 76, 81, 83, 90, 91, 96, 101, 102, 105, 112, 115, 118, 121, 122, 123, 125, 126, 128, 131, 142, 146, 151, 153, 156, 161, 165, 166, 168, 173, 178, 181, 186, 187, 188, 195, 200, 202, 206, 208, 216
Offset: 1

Views

Author

Lekraj Beedassy, Aug 20 2006

Keywords

Comments

Entries in A046953 which are not in A060461 or equivalently, entries in A024899 which are not in A002822.

Crossrefs

Cf. A121764.

Programs

  • GAP
    Filtered([1..250], k-> not IsPrime(6*k-1) and IsPrime(6*k+1)); # G. C. Greubel, Feb 20 2019
  • Magma
    [n: n in [1..250] | not IsPrime(6*n-1) and  IsPrime(6*n+1)]; // G. C. Greubel, Feb 20 2019
    
  • Mathematica
    Select[Range[250], ! PrimeQ[6# - 1] && PrimeQ[6# + 1] &] (* Ray Chandler, Aug 22 2006 *)
  • PARI
    for(n=1, 250, if(!isprime(6*n-1) && isprime(6*n+1), print1(n", "))) \\ G. C. Greubel, Feb 20 2019
    
  • Sage
    [n for n in (1..250) if not is_prime(6*n-1) and  is_prime(6*n+1)] # G. C. Greubel, Feb 20 2019
    

Extensions

Extended by Ray Chandler, Aug 22 2006

A153218 Numbers k such that 6k + 7 is prime.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 9, 10, 11, 12, 15, 16, 17, 20, 22, 24, 25, 26, 29, 31, 32, 34, 36, 37, 39, 44, 45, 46, 50, 51, 54, 55, 57, 60, 61, 62, 65, 67, 69, 71, 72, 75, 76, 80, 82, 86, 89, 90, 94, 95, 99, 100, 101, 102, 104, 106, 109, 111, 114, 117, 120, 121, 122, 124, 125, 127, 130
Offset: 1

Views

Author

Vincenzo Librandi, Dec 21 2008

Keywords

Comments

One less than the associated term in A024899. - R. J. Mathar, Jan 05 2011

Crossrefs

Cf. A153219.

Programs

A124408 Numbers k such that 2k+1, 4k+1 and 6k+1 are primes.

Original entry on oeis.org

1, 3, 18, 105, 135, 153, 165, 168, 300, 363, 585, 618, 648, 765, 828, 1110, 1140, 1278, 1518, 1530, 1533, 2130, 2223, 2400, 2475, 2613, 2790, 2925, 3075, 3180, 3345, 3420, 3483, 3810, 3840, 3843, 3933, 4008, 4083, 4095, 4143, 4260, 4263, 4323, 4470, 4545
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[4600], And @@ PrimeQ /@ ({2, 4, 6}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 3, isprime(2*j*k+1)) == 3; \\ Jinyuan Wang, Aug 04 2019

A124409 Numbers k such that 2k+1, 4k+1, 6k+1 and 8k+1 are primes.

Original entry on oeis.org

165, 765, 1530, 2130, 2475, 3420, 5415, 7695, 9060, 11505, 12705, 13020, 15885, 16650, 20055, 20745, 22530, 24915, 26940, 29670, 32925, 35070, 36885, 39270, 44370, 47730, 48465, 54735, 55860, 56310, 58860, 65655, 66600, 67365, 67650
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[68000], And @@ PrimeQ /@ ({2, 4, 6, 8}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 4, isprime(2*j*k+1)) == 4; \\ Jinyuan Wang, Aug 04 2019

A124410 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1 and 10k+1 are primes.

Original entry on oeis.org

5415, 12705, 13020, 44370, 82950, 98280, 105525, 112200, 115140, 123855, 134250, 134460, 187740, 188745, 210165, 225705, 247170, 256410, 296310, 302085, 367875, 375645, 382890, 399585, 404040, 476340, 487830, 526845, 532095, 566430, 578085
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[600000], And @@ PrimeQ /@ ({2, 4, 6, 8, 10}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 5, isprime(2*j*k+1)) == 5; \\ Jinyuan Wang, Aug 04 2019

A124411 Numbers k such that 2k+1, 4k+1, 6k+1, 8k+1, 10k+1 and 12k+1 are primes.

Original entry on oeis.org

12705, 13020, 105525, 256410, 966840, 1707510, 1944495, 2310000, 2478630, 3132675, 3836070, 3976770, 4112430, 4532325, 5499585, 5920005, 6610485, 7390845, 8552250, 10739505, 11120340, 12231450, 12338130, 13243230, 16467255
Offset: 1

Views

Author

Artur Jasinski, Oct 31 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], And @@ PrimeQ /@ ({2, 4, 6, 8, 10, 12}*# + 1) &] (* Ray Chandler, Nov 20 2006 *)
  • PARI
    is(k) = sum(j = 1, 6, isprime(2*j*k+1)) == 6; \\ Jinyuan Wang, Aug 04 2019

Extensions

Extended by Ray Chandler, Nov 20 2006

A023287 Primes that remain prime through 3 iterations of function f(x) = 6x + 1.

Original entry on oeis.org

61, 101, 1811, 3491, 4091, 5711, 5801, 6361, 7121, 10391, 10771, 11311, 13421, 15131, 17791, 18911, 19471, 20011, 24391, 25601, 25951, 30091, 35251, 41911, 45631, 47431, 55631, 58711, 62921, 67891, 70451, 70571, 72271, 74051, 74161, 75431, 80471, 86341
Offset: 1

Views

Author

Keywords

Comments

Primes p such that s1=p, s2=6*s1+1, s3=6*s2+1 and s4=6*s3+1 are primes forming a special chain of four primes. A fifth term in such a chain cannot arise. See A085956, A086361, A086362.
Entries in chains are congruent to {1,7,3,9} mod 10.

Examples

			First chain is {61, 367, 2203, 13219};
319th chain is {1291391, 7748347, 46490083, 278940499}.
		

Crossrefs

Subsequence of A007693, A023256, and A024899.

Programs

  • Magma
    [n: n in [1..150000] | IsPrime(n) and IsPrime(6*n+1) and IsPrime(36*n+7) and IsPrime(216*n+43)] // Vincenzo Librandi, Aug 04 2010
  • Mathematica
    k=0; m=6; Do[s=Prime[n]; s1=m*s+1; s2=m*s1+1; s3=m*s2+1; If[PrimeQ[s1]&&PrimeQ[s2]&&PrimeQ[s3], k=k+1; Print[{k, n, s, s1, s2, s3}]], {n, 1, 100000}] (* edited by Zak Seidov, Feb 08 2011 *)
    thrQ[n_]:=AllTrue[Rest[NestList[6#+1&,n ,3]],PrimeQ]; Select[Prime[Range[9000]],thrQ] (* Harvey P. Dale, Mar 03 2024 *)

Formula

{p, 6p+1, 36p+7, 216p+43} are all primes, where p is prime.

Extensions

Additional comments from Labos Elemer, Jul 23 2003

A167056 Numbers k such that 12*k + 7 is prime.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 10, 11, 12, 13, 16, 17, 18, 22, 23, 25, 27, 30, 31, 36, 38, 40, 41, 43, 45, 47, 50, 51, 52, 53, 57, 60, 61, 62, 65, 67, 68, 71, 73, 75, 76, 80, 82, 86, 87, 88, 90, 93, 97, 102, 106, 107, 108, 110, 116, 118, 120, 121, 122, 123, 127, 128, 130, 131, 135, 138
Offset: 1

Views

Author

Michael B. Porter, Oct 27 2009

Keywords

Comments

Corresponds to odd numbers in A024899.

Examples

			2 is in the sequence since 12*2+7 = 31 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..150] | IsPrime(12*n+7)]; // Vincenzo Librandi, May 20 2014
  • Mathematica
    Select[Range[0, 200], PrimeQ[12 # + 7] &] (* Vincenzo Librandi, May 20 2014 *)
  • PARI
    isA167056(n) = isprime(12*n+7)
    

A089953 Numbers n such that 3*n+7 is prime.

Original entry on oeis.org

0, 2, 4, 8, 10, 12, 18, 20, 22, 24, 30, 32, 34, 40, 44, 48, 50, 52, 58, 62, 64, 68, 72, 74, 78, 88, 90, 92, 100, 102, 108, 110, 114, 120, 122, 124, 130, 134, 138, 142, 144, 150, 152, 160, 164, 172, 178, 180, 188, 190, 198, 200, 202, 204, 208, 212, 218, 222, 228
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 12 2004

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta,UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

Cf. A002476 gives primes, A034936, A024892, A024899.

Programs

Formula

a(n) = A034936(n)-1 = A024892(n)-2 = 2*A024899(n)-2.

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 09 2011

A167021 a(n) = 1 iff 6n+1 is prime.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1
Offset: 1

Views

Author

Washington Bomfim, Oct 27 2009

Keywords

Examples

			a(3) = 1 because 6*3+1 is prime;
a(4) = 0 since 6*4+1 is composite.
		

Crossrefs

Cf. A024899, A167020, A132350. For n < 14, a(n) = A132350(n).

Programs

  • Magma
    [IsPrime(6*n+1) select 1 else 0:n in [1..105]]; // Marius A. Burtea, Oct 06 2019
  • Mathematica
    If[PrimeQ[6#+1],1,0]&/@Range[120] (* Harvey P. Dale, Apr 03 2012 *)
  • PARI
    a(n) = isprime(6*n+1); \\ Michel Marcus, Jan 19 2019
    
Previous Showing 11-20 of 34 results. Next