cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 145 results. Next

A364349 Number of strict integer partitions of n containing the sum of no subset of the parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 14, 21, 21, 28, 29, 38, 38, 51, 50, 65, 68, 82, 83, 108, 106, 130, 136, 163, 168, 206, 210, 248, 266, 307, 322, 381, 391, 457, 490, 553, 582, 675, 703, 797, 854, 952, 1000, 1147, 1187, 1331, 1437, 1564, 1656, 1869
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2023

Keywords

Comments

First differs from A275972 in counting (7,5,3,1), which is not knapsack.

Examples

			The partition y = (7,5,3,1) has no subset with sum in y, so is counted under a(16).
The partition y = (15,8,4,2,1) has subset {1,2,4,8} with sum in y, so is not counted under a(31).
The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)    (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (4,2)  (4,3)    (5,3)    (5,4)
                          (4,1)  (5,1)  (5,2)    (6,2)    (6,3)
                                        (6,1)    (7,1)    (7,2)
                                        (4,2,1)  (5,2,1)  (8,1)
                                                          (4,3,2)
                                                          (5,3,1)
                                                          (6,2,1)
		

Crossrefs

For subsets of {1..n} we have A151897, complement A364534.
The non-strict version is A237667, ranked by A364531.
The complement in strict partitions is counted by A364272.
The linear combination-free version is A364350.
The binary version is A364533, allowing re-used parts A364346.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972.
A236912 counts sum-free partitions (not re-using parts), complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Function[ptn,UnsameQ@@ptn&&Select[Subsets[ptn,{2,Length[ptn]}],MemberQ[ptn,Total[#]]&]=={}]]],{n,0,30}]

A086543 Number of partitions of n with at least one odd part.

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 8, 15, 17, 30, 35, 56, 66, 101, 120, 176, 209, 297, 355, 490, 585, 792, 946, 1255, 1498, 1958, 2335, 3010, 3583, 4565, 5428, 6842, 8118, 10143, 12013, 14883, 17592, 21637, 25525, 31185, 36711, 44583, 52382, 63261, 74173, 89134, 104303, 124754, 145698, 173525, 202268
Offset: 0

Views

Author

Vladeta Jovovic, Sep 10 2003

Keywords

Comments

From Gus Wiseman, Oct 12 2023: (Start)
Also the number of integer partitions of n whose greatest part is not n/2, ranked by A366319. The a(1) = 1 through a(7) = 15 partitions are:
(1) (2) (3) (4) (5) (6) (7)
(21) (31) (32) (42) (43)
(111) (1111) (41) (51) (52)
(221) (222) (61)
(311) (411) (322)
(2111) (2211) (331)
(11111) (21111) (421)
(111111) (511)
(2221)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
Compare to the a(1) = 1 through a(7) = 15 partitions with at least one odd part, ranked by A366322:
(1) (11) (3) (31) (5) (33) (7)
(21) (211) (32) (51) (43)
(111) (1111) (41) (321) (52)
(221) (411) (61)
(311) (2211) (322)
(2111) (3111) (331)
(11111) (21111) (421)
(111111) (511)
(2221)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
(End)

Examples

			a(4)=3 because we have [3,1],[2,1,1] and [1,1,1] ([4] and [2,2] do not qualify).
		

Crossrefs

The complement is counted by A035363, ranks A344415.
These partitions have ranks A366322.
A025065 counts partitions with sum <= twice length, ranks A344296.
A110618 counts partitions with sum >= twice maximum, ranks A344291.

Programs

  • Maple
    g:=sum(x^(2*k-1)/product(1-x^j,j=1..2*k-1)/product(1-x^(2*j),j=k..70),k=1..70): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..45); # Emeric Deutsch, Mar 30 2006
  • Mathematica
    nn=50;CoefficientList[Series[Sum[x^(2k-1)/Product[1-x^j,{j,1,2k-1}] /Product[(1-x^(2j)),{j,k,nn}],{k,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *)
    Table[Length[Select[IntegerPartitions[n],Max[#]!=n/2&]],{n,0,30}] (* Gus Wiseman, Oct 12 2023 *)
  • PARI
    x='x+O('x^66); concat([0], Vec(1/eta(x)-1/eta(x^2)) ) \\ Joerg Arndt, May 04 2013

Formula

A000041(n) if n is odd; otherwise, A000041(n) - A000041(n/2).
G.f.: Sum_{k>=1} x^(2k-1)/((Product_{j=1..2k-1} (1-x^j))*(Product_{j>=k} (1-x^(2j)))). - Emeric Deutsch, Mar 30 2006
G.f.: 1/E(x) - 1/E(x^2) where E(x) = prod(n>=1, 1-x^n ); see Pari code. - Joerg Arndt, May 04 2013

A332280 Number of integer partitions of n with unimodal run-lengths.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 97, 129, 166, 215, 273, 352, 439, 557, 692, 865, 1066, 1325, 1614, 1986, 2413, 2940, 3546, 4302, 5152, 6207, 7409, 8862, 10523, 12545, 14814, 17562, 20690, 24397, 28615, 33645, 39297, 46009, 53609, 62504, 72581, 84412
Offset: 0

Views

Author

Gus Wiseman, Feb 18 2020

Keywords

Comments

First differs from A000041 at a(10) = 41, A000041(10) = 42.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence.

Examples

			The a(10) = 41 partitions (A = 10) are:
  (A)     (61111)   (4321)     (3211111)
  (91)    (55)      (43111)    (31111111)
  (82)    (541)     (4222)     (22222)
  (811)   (532)     (42211)    (222211)
  (73)    (5311)    (421111)   (2221111)
  (721)   (5221)    (4111111)  (22111111)
  (7111)  (52111)   (3331)     (211111111)
  (64)    (511111)  (3322)     (1111111111)
  (631)   (442)     (331111)
  (622)   (4411)    (32221)
  (6211)  (433)     (322111)
Missing from this list is only (33211).
		

Crossrefs

The complement is counted by A332281.
Heinz numbers of these partitions are the complement of A332282.
Taking 0-appended first-differences instead of run-lengths gives A332283.
The normal case is A332577.
The opposite version is A332638.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Numbers whose unsorted prime signature is unimodal are A332288.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
          j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
        end:
    a:= n-> b(n$2, 0, true):
    seq(a(n), n=0..65);  # Alois P. Heinz, Feb 20 2020
  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
    a[n_] := b[n, n, 0, True];
    a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A332281 Number of integer partitions of n whose run-lengths are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 6, 10, 16, 24, 33, 51, 70, 100, 137, 189, 250, 344, 450, 597, 778, 1019, 1302, 1690, 2142, 2734, 3448, 4360, 5432, 6823, 8453, 10495, 12941, 15968, 19529, 23964, 29166, 35525, 43054, 52173, 62861, 75842, 91013, 109208
Offset: 0

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence.

Examples

			The a(10) = 1 through a(15) = 10 partitions:
  (33211)  (332111)  (44211)    (44311)     (55211)      (44322)
                     (3321111)  (333211)    (433211)     (55311)
                                (442111)    (443111)     (443211)
                                (33211111)  (3332111)    (533211)
                                            (4421111)    (552111)
                                            (332111111)  (4332111)
                                                         (4431111)
                                                         (33321111)
                                                         (44211111)
                                                         (3321111111)
		

Crossrefs

The complement is counted by A332280.
The Heinz numbers of these partitions are A332282.
The opposite version is A332639.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
          j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
        end:
    a:= n-> combinat[numbpart](n)-b(n$2, 0, true):
    seq(a(n), n=0..65);  # Alois P. Heinz, Feb 20 2020
  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],!unimodQ[Length/@Split[#]]&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
    a[n_] := PartitionsP[n] - b[n, n, 0, True];
    a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A332639 Number of integer partitions of n whose negated run-lengths are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 7, 10, 17, 25, 36, 51, 75, 102, 143, 192, 259, 346, 462, 599, 786, 1014, 1309, 1670, 2133, 2686, 3402, 4258, 5325, 6623, 8226, 10134, 12504, 15328, 18779, 22878, 27870, 33762, 40916, 49349, 59457, 71394, 85679, 102394
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 1 through a(13) = 10 partitions:
  (3221)  (4221)  (5221)   (4331)    (4332)    (5332)
                  (32221)  (6221)    (5331)    (6331)
                           (42221)   (7221)    (8221)
                           (322211)  (43221)   (43321)
                                     (52221)   (53221)
                                     (322221)  (62221)
                                     (422211)  (332221)
                                               (422221)
                                               (522211)
                                               (3222211)
		

Crossrefs

The version for normal sequences is A328509.
The non-negated complement is A332280.
The non-negated version is A332281.
The complement is counted by A332638.
The case that is not unimodal either is A332640.
The Heinz numbers of these partitions are A332642.
The generalization to run-lengths of compositions is A332727.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Compositions whose negation is not unimodal are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],!unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A332283 Number of integer partitions of n whose first differences (assuming the last part is zero) are unimodal.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 13, 18, 24, 30, 38, 49, 59, 73, 90, 108, 129, 159, 184, 216, 258, 298, 347, 410, 466, 538, 626, 707, 807, 931, 1043, 1181, 1351, 1506, 1691, 1924, 2132, 2382, 2688, 2971, 3300, 3704, 4073, 4500, 5021, 5510, 6065, 6740, 7362, 8078
Offset: 0

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

First differs from A000041 at a(6) = 10, A000041(6) = 11.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (421)
                            (11111)  (411)     (511)
                                     (3111)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Partitions with unimodal run-lengths are A332280.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
The complement is counted by A332284.
The strict case is A332285.
Heinz numbers of partitions not in this class are A332287.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],unimodQ[Differences[Append[#,0]]]&]],{n,0,30}]

A096441 Number of palindromic and unimodal compositions of n. Equivalently, the number of orbits under conjugation of even nilpotent n X n matrices.

Original entry on oeis.org

1, 2, 2, 4, 3, 7, 5, 11, 8, 17, 12, 26, 18, 37, 27, 54, 38, 76, 54, 106, 76, 145, 104, 199, 142, 266, 192, 357, 256, 472, 340, 621, 448, 809, 585, 1053, 760, 1354, 982, 1740, 1260, 2218, 1610, 2818, 2048, 3559, 2590, 4485, 3264, 5616, 4097, 7018, 5120, 8728, 6378
Offset: 1

Views

Author

Nolan R. Wallach (nwallach(AT)ucsd.edu), Aug 10 2004

Keywords

Comments

Number of partitions of n such that all differences between successive parts are even, see example. [Joerg Arndt, Dec 27 2012]
Number of partitions of n where either all parts are odd or all parts are even. - Omar E. Pol, Aug 16 2013
From Gus Wiseman, Jan 13 2022: (Start)
Also the number of integer partitions of n with all even multiplicities (or run-lengths) except possibly the first. These are the conjugates of the partitions described by Joerg Arndt above. For example, the a(1) = 1 through a(8) = 11 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (322) (44)
(211) (11111) (222) (511) (422)
(1111) (411) (31111) (611)
(2211) (1111111) (2222)
(21111) (3311)
(111111) (22211)
(41111)
(221111)
(2111111)
(11111111)
(End)

Examples

			From _Joerg Arndt_, Dec 27 2012: (Start)
There are a(10)=17 partitions of 10 where all differences between successive parts are even:
[ 1]  [ 1 1 1 1 1 1 1 1 1 1 ]
[ 2]  [ 2 2 2 2 2 ]
[ 3]  [ 3 1 1 1 1 1 1 1 ]
[ 4]  [ 3 3 1 1 1 1 ]
[ 5]  [ 3 3 3 1 ]
[ 6]  [ 4 2 2 2 ]
[ 7]  [ 4 4 2 ]
[ 8]  [ 5 1 1 1 1 1 ]
[ 9]  [ 5 3 1 1 ]
[10]  [ 5 5 ]
[11]  [ 6 2 2 ]
[12]  [ 6 4 ]
[13]  [ 7 1 1 1 ]
[14]  [ 7 3 ]
[15]  [ 8 2 ]
[16]  [ 9 1 ]
[17]  [ 10 ]
(End)
		

References

  • A. G. Elashvili and V. G. Kac, Classification of good gradings of simple Lie algebras. Lie groups and invariant theory, 85-104, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005.

Crossrefs

Bisections are A078408 and A096967.
The complement in partitions is counted by A006477
A version for compositions is A016116.
A pointed version is A035363, ranked by A066207.
A000041 counts integer partitions.
A025065 counts palindromic partitions.
A027187 counts partitions with even length/maximum.
A035377 counts partitions using multiples of 3.
A058696 counts partitions of even numbers, ranked by A300061.
A340785 counts factorizations into even factors.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i>n, 0,
          `if`(irem(n, i)=0, 1, 0) +add(`if`(irem(j, 2)=0,
           b(n-i*j, i+1), 0), j=0..n/i))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    (* The following Mathematica program first generates all of the palindromic, unimodal compositions of n and then counts them. *)
    Pal[n_] := Block[{i, j, k, m, Q, L}, If[n == 1, Return[{{1}}]]; If[n == 2, Return[{{1, 1}, {2}}]]; L = {{n}}; If[Mod[n, 2] == 0, L = Append[L, {n/2, n/2}]]; For[i = 1, i < n, i++, Q = Pal[n - 2i]; m = Length[Q]; For[j = 1, j <= m, j++, If[i <= Q[[j, 1]], L = Append[L, Append[Prepend[Q[[j]], i], i]]]]]; L] NoPal[n_] := Length[Pal[n]]
    a[n_] := PartitionsQ[n] + If[EvenQ[n], PartitionsP[n/2], 0]; Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Mar 17 2014, after Vladeta Jovovic *)
    Table[Length[Select[IntegerPartitions[n],And@@EvenQ/@Rest[Length/@Split[#]]&]],{n,1,30}] (* Gus Wiseman, Jan 13 2022 *)
  • PARI
    my(x='x+O('x^66)); Vec(eta(x^2)/eta(x)+1/eta(x^2)-2) \\ Joerg Arndt, Jan 17 2016

Formula

G.f.: sum(j>=1, q^j * (1-q^j)/prod(i=1..j, 1-q^(2*i) ) ).
G.f.: F + G - 2, where F = Product_{j>=1} 1/(1-q^(2*j)), G = Product_{j>=0} 1/(1-q^(2*j+1)).
a(2*n) = A000041(n) + A000009(2*n); a(2*n-1) = A000009(2*n-1). - Vladeta Jovovic, Aug 11 2004
a(n) = A000009(n) + A035363(n) = A000041(n) - A006477(n). - Omar E. Pol, Aug 16 2013

A110618 Number of partitions of n with no part larger than n/2. Also partitions of n into n/2 or fewer parts.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 7, 8, 15, 18, 30, 37, 58, 71, 105, 131, 186, 230, 318, 393, 530, 653, 863, 1060, 1380, 1686, 2164, 2637, 3345, 4057, 5096, 6158, 7665, 9228, 11395, 13671, 16765, 20040, 24418, 29098, 35251, 41869, 50460, 59755, 71669, 84626, 101050
Offset: 0

Views

Author

Henry Bottomley, Aug 01 2005

Keywords

Comments

Also the number of integer partitions of n that are the vertex-degrees of some set multipartition (multiset of nonempty sets) with no singletons. - Gus Wiseman, Oct 30 2018

Examples

			a(5) = 3 since 5 can be partitioned as 1+1+1+1+1, 2+1+1+1, or 2+2+1; not counted are 5, 4+1, or 3+2.
a(6) = 7 since 6 can be partitioned as 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+1+3, 1+2+3, 3+3; not counted are 1+1+4, 2+4, 1+5, 6.
From _Gus Wiseman_, Oct 30 2018: (Start)
The a(2) = 1 through a(8) = 15 partitions with no part larger than n/2:
  (11)  (111)  (22)    (221)    (33)      (322)      (44)
               (211)   (2111)   (222)     (331)      (332)
               (1111)  (11111)  (321)     (2221)     (422)
                                (2211)    (3211)     (431)
                                (3111)    (22111)    (2222)
                                (21111)   (31111)    (3221)
                                (111111)  (211111)   (3311)
                                          (1111111)  (4211)
                                                     (22211)
                                                     (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
The a(2) = 1 through a(8) = 15 partitions into n/2 or fewer parts:
  (2)  (3)  (4)   (5)   (6)    (7)    (8)
            (22)  (32)  (33)   (43)   (44)
            (31)  (41)  (42)   (52)   (53)
                        (51)   (61)   (62)
                        (222)  (322)  (71)
                        (321)  (331)  (332)
                        (411)  (421)  (422)
                               (511)  (431)
                                      (521)
                                      (611)
                                      (2222)
                                      (3221)
                                      (3311)
                                      (4211)
                                      (5111)
The a(6) = 7 integer partitions of 6 with no part larger than n/2 together with a realizing set multipartition of each (the parts of the partition count the appearances of each vertex in the set multipartition):
      (33): {{1,2},{1,2},{1,2}}
     (321): {{1,2},{1,2},{1,3}}
    (3111): {{1,2},{1,3},{1,4}}
     (222): {{1,2,3},{1,2,3}}
    (2211): {{1,2},{1,2,3,4}}
   (21111): {{1,2},{1,3,4,5}}
  (111111): {{1,2,3,4,5,6}}
(End)
		

Crossrefs

Programs

  • Maple
    A000070 := proc(n) add( combinat[numbpart](i),i=0..n) ; end proc:
    A110618 := proc(n) combinat[numbpart](n) - A000070(floor((n-1)/2)) ; end proc: # R. J. Mathar, Jan 24 2011
  • Mathematica
    f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; g[n_] := f[n, Floor[n/2]]; g[0] = 1; g[1] = 0; Array[g, 47, 0] (* Robert G. Wilson v, Jan 23 2011 *)
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    multhyp[m_]:=Select[mps[m],And[And@@UnsameQ@@@#,Min@@Length/@#>1]&];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[n],multhyp[#]!={}&]],{n,8}] (* Gus Wiseman, Oct 30 2018 *)
  • PARI
    a(n) = numbpart(n) - sum(i=0, if (n%2, n\2, n/2-1), numbpart(i)); \\ Michel Marcus, Oct 31 2018

Formula

a(n) = A000041(n) - Sum_{i=0..floor((n-1)/2)} A000041(i) = A000041(n) - A000070(floor((n-1)/2)) = A110619(n, 2).
a(2*n) = A209816(n). - Gus Wiseman, Oct 30 2018

A266755 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120, 114, 127, 120, 133, 127, 140, 133, 147, 140, 154, 147, 161, 154, 169
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

This is the same as A005044 but without the three leading zeros. There are so many situations where one wants this sequence rather than A005044 that it seems appropriate for it to have its own entry.
But see A005044 (still the main entry) for numerous applications and references.
Also, Molien series for invariants of finite Coxeter group D_3.
The Molien series for the finite Coxeter group of type D_k (k >= 3) has g.f. = 1/Product_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.
Also, Molien series for invariants of finite Coxeter group A_3. The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i). Note that this is the root system A_k not the alternating group Alt_k.
a(n) is the number of partitions of n into parts 2, 3, and 4. - Joerg Arndt, Apr 16 2017
From Gus Wiseman, May 23 2021: (Start)
Also the number of integer partitions of n into at most n/2 parts, none greater than 3. The case of any maximum is A110618. The case of any length is A001399. The Heinz numbers of these partitions are given by A344293.
For example, the a(2) = 1 through a(13) = 5 partitions are:
2 3 22 32 33 322 332 333 3322 3332 3333 33322
31 222 331 2222 3222 3331 32222 33222 33331
321 3221 3321 22222 33221 33321 322222
3311 32221 33311 222222 332221
33211 322221 333211
332211
333111
(End)

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 4*x^8 + ... - _Michael Somos_, Jan 29 2022
		

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.
A variant of A005044.
Cf. A001400 (partial sums).
Cf. A308065.
Number of partitions of n whose Heinz number is in A344293.
A001399 counts partitions with all parts <= 3, ranked by A051037.
A025065 counts partitions of n with >= n/2 parts, ranked by A344296.
A035363 counts partitions of n with n/2 parts, ranked by A340387.
A110618 counts partitions of n into at most n/2 parts, ranked by A344291.

Programs

  • Magma
    I:=[1,0,1,1,2,1,3,2,4]; [n le 9 select I[n] else Self(n-2)+ Self(n-3)+Self(n-4)-Self(n-5)-Self(n-6)-Self(n-7)+Self(n-9): n in [1..100]]; // Vincenzo Librandi, Jan 11 2016
    
  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)), {x, 0, 100}], x] (* JungHwan Min, Jan 10 2016 *)
    LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1}, {1,0,1,1,2,1,3,2,4}, 100] (* Vincenzo Librandi, Jan 11 2016 *)
    Table[Length[Select[IntegerPartitions[n],Length[#]<=n/2&&Max@@#<=3&]],{n,0,30}] (* Gus Wiseman, May 23 2021 *)
    a[ n_] := Round[(n + 3*(2 - Mod[n,2]))^2/48]; (* Michael Somos, Jan 29 2022 *)
  • PARI
    Vec(1/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^100)) \\ Michel Marcus, Jan 11 2016
    
  • PARI
    {a(n) = round((n + 3*(2-n%2))^2/48)}; /* Michael Somos, Jan 29 2022 */
    
  • Sage
    (1/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Jun 13 2019

Formula

a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8. - Vincenzo Librandi, Jan 11 2016
a(n) = a(-9-n) for all n in Z. a(n) = a(n+3) for all n in 2Z. - Michael Somos, Jan 29 2022
E.g.f.: exp(-x)*(81 - 18*x + exp(2*x)*(107 + 60*x + 6*x^2) + 64*exp(x/2)*cos(sqrt(3)*x/2) + 36*exp(x)*(cos(x) - sin(x)))/288. - Stefano Spezia, Mar 05 2023
For n >= 3, if n is even, a(n) = a(n-3) + floor(n/4) + 1, otherwise a(n) = a(n-3). - Robert FERREOL, Feb 05 2024
a(n) = floor((n^2+9*n+(3*n+9)*(-1)^n+39)/48). - Hoang Xuan Thanh, Jun 03 2025

A124943 Table read by rows: number of partitions of n with k as low median.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 4, 2, 0, 0, 1, 6, 3, 1, 0, 0, 1, 8, 4, 2, 0, 0, 0, 1, 11, 6, 3, 1, 0, 0, 0, 1, 15, 8, 4, 2, 0, 0, 0, 0, 1, 20, 12, 5, 3, 1, 0, 0, 0, 0, 1, 26, 16, 7, 4, 2, 0, 0, 0, 0, 0, 1, 35, 22, 10, 5, 3, 1, 0, 0, 0, 0, 0, 1, 45, 29, 14, 6, 4, 2, 0, 0, 0, 0, 0, 0, 1, 58, 40, 19, 8, 5, 3, 1
Offset: 1

Views

Author

Keywords

Comments

For a multiset with an odd number of elements, the low median is the same as the median. For a multiset with an even number of elements, the low median is the smaller of the two central elements.
Arrange the parts of a partition nonincreasing order. Remove the first part, then the last, then the first remaining part, then the last remaining part, and continue until only a single number, the low median, remains. - Clark Kimberling, May 16 2019

Examples

			For the partition [2,1^2], the sole middle element is 1, so that is the low median. For [3,2,1^2], the two middle elements are 1 and 2; the low median is the smaller, 1.
First 8 rows:
  1
  1   1
  2   0   1
  3   1   0   1
  4   2   0   0   1
  6   3   1   0   0   1
  8   4   2   0   0   0   1
  11  6   3   1   0   0   0   1
From _Gus Wiseman_, Jul 09 2023: (Start)
Row n = 8 counts the following partitions:
  (71)        (62)     (53)   (44)  .  .  .  (8)
  (611)       (521)    (431)
  (5111)      (422)    (332)
  (4211)      (3221)
  (41111)     (2222)
  (3311)      (22211)
  (32111)
  (311111)
  (221111)
  (2111111)
  (11111111)
(End)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A027336, ranks A363488.
The high version of this triangle is A124944.
The rank statistic for this triangle is A363941, high version A363942.
A version for mean instead of median is A363945, rank statistic A363943.
A high version for mean instead of median is A363946, rank stat A363944.
A version for mode instead of median is A363952, high A363953.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A325347 counts partitions with integer median, ranks A359908.
A359893 and A359901 count partitions by median.
A360005(n)/2 returns median of prime indices.

Programs

  • Mathematica
    Map[BinCounts[#, {1, #[[1]] + 1, 1}] &[Map[#[[Floor[(Length[#] + 2)/2]]] &, IntegerPartitions[#]]] &, Range[13]]  (* Peter J. C. Moses, May 14 2019 *)
Previous Showing 11-20 of 145 results. Next