cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 43 results. Next

A260687 Triangular array with n-th row giving coefficients of polynomial Product_{k = 2..n} (k + n*t) for n >= 1.

Original entry on oeis.org

1, 2, 2, 6, 15, 9, 24, 104, 144, 64, 120, 770, 1775, 1750, 625, 720, 6264, 20880, 33480, 25920, 7776, 5040, 56196, 250096, 571095, 708295, 453789, 117649, 40320, 554112, 3127040, 9433088, 16486400, 16744448, 9175040, 2097152, 362880, 5973264, 41229324, 156498804
Offset: 1

Views

Author

Peter Bala, Nov 16 2015

Keywords

Comments

Related to A220883 and A251592.

Examples

			Triangle begins
...1
...2      2
...6     15       9
..24    104     144      64
.120    770    1775    1750     625
.720   6264   20880   33480   25920    7776
5040  56196  250096  571095  708295  453789  117649
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998

Crossrefs

A000142 (column 0), A000169 (main diagonal), A006675 (column 1). Cf. A001700, A025174, A056856, A163456, A220883, A224274, A251592.

Programs

  • Maple
    seq(seq(coeff(mul(n*t + k, k = 2 .. n), t, i), i = 0..n-1), n = 1..10);

Formula

E.g.f. (with constant term 1 included): A(x,t) = [ 1/x*Revert( x*(1 - x)^t ) ]^(1/t) = Sum_{n >= 0} 1/(n*t + 1)*binomial(n*t + n,n)*x^n = 1 + x + (2 + 2*t)*x^2/2! + (2 + 3*t)*(3 + 3*t)*x^3/3! + (2 + 4*t)*(3 + 4*t)*(4 + 4*t)*x^4/4! + ..., where Revert denotes the series reversion operator with respect to x.
In the notation of the Bala link, A(x,t) = I^t(1/(1 - x)) where I^t is a fractional inversion operator.
A(x,t) = B_(1+t)(x), where B_t(x) is the e.g.f. for A251592 and is the generalized binomial series of Lambert. See Graham et al., Section 5.4 and Section 7.5.
A(x,t)^m = Sum_{n >= 0} m/(n*t + m)*binomial(n*t + n + m - 1,n)*x^n = 1 + m*x + m*(2*t + m + 1)*x^2/2! + m*(3*t + m + 1)*(3*t + m + 2)*x^3/3! + m*(4*t + m + 1)*(4*t + m + 2)*(4*t + m + 3)*x^4/4! + ....
A(x,t)^t = 1 + t*x + t(1 + 3*t)*x^2/2! + t*(1 + 4*t)*(2 + 4*t)*x^3/3! + t*(1 + 5*t)*(2 + 5*t)*(3 + 5*t)*x^4/4! + ... is the e.g.f for A220883 with an extra constant term 1 and an extra factor of t included.
t*log( A(x,t) ) = t*x + t*(1 + 2*t)*x^2/2! + t*(1 + 3*t)*(2 + 3*t)*x^3/3! + t*(1 + 4*t)*(2 + 4*t)*(3 + 4*t)*x^4/4! + ... is the e.g.f for A056856.
For n = 1,2,3,..., the sequence [x^n] A(x,t)^n = [1, (2*t + 3), (3*t + 4)*(3*t + 5)/2!, (4*t + 5)*(4*t + 6)*(4*t + 7)/3!, ...]. This sequence has the following specializations:
t = 0: [1, 3, 10, 35, 126, ...] = A001700 (with different offset).
t = 1: [1, 5, 28, 165, 1001, ...] = A025174.
t = 2: [1, 7, 55, 455, 3876, ...] = A224274.
t = 3: [1, 9, 91, 969, 10626, ...] = A163456.

A309955 a(n) = [x^n] (1 + p(x))^n, where p(x) is the g.f. of A000040.

Original entry on oeis.org

1, 2, 10, 59, 362, 2287, 14707, 95762, 629386, 4166627, 27743445, 185602188, 1246543559, 8399791922, 56762121398, 384513835219, 2610322687850, 17753944125159, 120954505004605, 825274753259894, 5638438272353597, 38569743775323134, 264127692090124488
Offset: 0

Views

Author

Alois P. Heinz, Aug 24 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, ithprime(n),
          (h-> add(b(j, h)*b(n-j, i-h), j=0..n))(iquo(i, 2))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..31);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, Prime[n],
         Function[h, Sum[b[j, h]*b[n-j, i-h], {j, 0, n}]][Quotient[i, 2]]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)

A360546 Triangle read by rows: T(n, m) = (n+1-m)*C(2*n+2-m, m)*C(3*n-3*m+2, n-m+1)/(2*n-m+2).

Original entry on oeis.org

1, 5, 2, 28, 20, 3, 165, 168, 50, 4, 1001, 1320, 588, 100, 5, 6188, 10010, 5940, 1568, 175, 6, 38760, 74256, 55055, 19800, 3528, 280, 7, 245157, 542640, 482664, 220220, 54450, 7056, 420, 8, 1562275, 3922512, 4069800, 2252432, 715715, 130680, 12936, 600, 9
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 11 2023

Keywords

Examples

			Triangle begins:
     1;
     5,     2;
    28,    20,    3;
   165,   168,   50,    4;
  1001,  1320,  588,  100,   5;
  6188, 10010, 5940, 1568, 175, 6;
		

Crossrefs

Programs

  • Maple
    A360546 := proc(n, k) m := n-k+1; (1/3)*binomial(3*m, m)*binomial(m + n, k) end:
    seq(print(seq(A360546(n, k), k = 0..n)), n = 0..8); # Peter Luschny, Feb 11 2023
  • Maxima
    T(n,m):=if n
    				

Formula

G.f.: -1/(2*x) + (sqrt(3)*cot((1/3)*arcsin((3*sqrt(3)*sqrt(x))/(2- 2*x*y))))/ (2*sqrt(x*(-27*x + 4*(-1+x*y)^2))).

A259613 a(n) = binomial(6*n,2*n)/3, n>0, a(0)=1.

Original entry on oeis.org

1, 5, 165, 6188, 245157, 10015005, 417225900, 17620076360, 751616304549, 32308782859535, 1397281501935165, 60727722660586800, 2650087220696342700, 116043807643289338428, 5096278545356362962504, 224377658168860057076688
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 30 2015

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Binomial(6*n,2*n)/3: n in [1..20]]; // Vincenzo Librandi, Jul 01 2015
  • Mathematica
    Join[{1}, Table[Binomial[6 n, 2 n]/3, {n, 30}]] (* Vincenzo Librandi, Jul 01 2015 *)
  • PARI
    vector(20,n, n--; if (n==0, 1, binomial(6*n,2*n)/3)) \\ Michel Marcus, Jul 01 2015
    

Formula

G.f.: A(x) = 1 + (x*B(x)')/(B(x)) where B(x) = 2 * (1 + x*B(x)^2)^2 / (1 - 2*x*B(x)^2 + sqrt(1-8*x*B(x)^2)).
a(n) ~ 3^(6*n-1/2) / (sqrt(Pi*n) * 2^(4*n+3/2)). - Vaclav Kotesovec, Jul 01 2015
a(n) = A025174(2*n), n>0. - R. J. Mathar, Jun 07 2016
From Peter Bala, Jun 08 2024: (Start)
a(n) = (9/2)*(6*n-1)*(6*n-5)*(3*n-1)*(3*n-2)/((4*n-1)*(4*n-3)*(2*n-1)*n) * a(n-1) with a(0) = 1 and a(1) = 5.
Right-hand side of the identity (1/3)*Sum_{k = 0..2*n} (-1)^k*binomial(-n, k)* binomial(5*n-k, 2*n-k) = (1/3)*binomial(6*n, 2*n). Compare with the identity Sum_{k = 0..n} (-1)^k*binomial(n, k)*binomial(5*n-k, 2*n-k) = binomial(4*n, 2*n). (End)
From Karol A. Penson, Jan 26 2025: (Start)
G.f. for 3*a(n),a(0)=1, denoted A, expressible entirely by radicals: A = A1 + A2 with
A1 = ((4*sqrt(4 - 27*sqrt(z)) + 12*i*sqrt(3)*z^(1/4))^(1/3) + (4*sqrt(4 - 27*sqrt(z)) - 12*i*sqrt(3)*z^(1/4))^(1/3))/(4*sqrt(4 - 27*sqrt(z))), and
A2 = (1/(4*sqrt(4 + 27*sqrt(z)) + 12*sqrt(3)*z^(1/4))^(1/3) + 1/(4*sqrt(4 + 27*sqrt(z)) - 12*sqrt(3)*z^(1/4))^(1/3))/sqrt(4 + 27*sqrt(z)),
where i = sqrt(-1), the imaginary unit. (End)

A309682 G.f.: C(x)*C(2*x^2)*C(3*x^3)*..., where C(x) is the g.f. for A000108.

Original entry on oeis.org

1, 1, 4, 10, 33, 81, 282, 762, 2599, 7979, 27343, 89371, 315256, 1078498, 3857048, 13651786, 49475282, 178736186, 655247192, 2401663838, 8883371016, 32906649488, 122619768860, 457836275272, 1716620421629, 6449729802639, 24308647131627, 91800114425437
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 12 2019

Keywords

Crossrefs

Programs

  • Maple
    C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          C(n), add(C(j)*i^j*b(n-i*j, i-1), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[Sum[CatalanNumber[k]*j^k*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]
    nmax = 30; CoefficientList[Series[Product[(1 - Sqrt[1 - 4*k*x^k])/(2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 4^n / n^(3/2), where c = 1/(2*sqrt(Pi)) * Product_{k>=1} (2^k*(2^(k-1) - sqrt(4^(k-1) - k))/k) = 0.711438694828613555153724789...

A144484 Triangle read by rows: T(n, k) = binomial(3*n+1-k, n-k) for n, k >= 0.

Original entry on oeis.org

1, 4, 1, 21, 6, 1, 120, 36, 8, 1, 715, 220, 55, 10, 1, 4368, 1365, 364, 78, 12, 1, 27132, 8568, 2380, 560, 105, 14, 1, 170544, 54264, 15504, 3876, 816, 136, 16, 1, 1081575, 346104, 100947, 26334, 5985, 1140, 171, 18, 1, 6906900, 2220075, 657800, 177100
Offset: 0

Views

Author

Roger L. Bagula, Oct 12 2008

Keywords

Comments

Previous name: A triangle sequence from a polynomial: p(x,n)=Sum[Binomial[3*n + 1 - m, n - m]*x^m, {m, 0, n}]; p(x,n)=Gamma[2*n+3]*Hypergeometric2F1[1,-n-1-3*n,x]/(Gamma[1+n]*Gamma[2+2*n}).

Examples

			{1},
{4, 1},
{21, 6, 1},
{120, 36, 8, 1},
{715, 220, 55, 10, 1},
{4368, 1365, 364, 78, 12, 1},
{27132, 8568, 2380, 560, 105, 14, 1},
{170544, 54264, 15504, 3876, 816, 136, 16, 1},
{1081575, 346104, 100947, 26334, 5985, 1140, 171, 18, 1},
{6906900, 2220075, 657800, 177100, 42504, 8855, 1540, 210, 20, 1},
{44352165, 14307150, 4292145, 1184040, 296010, 65780, 12650, 2024, 253, 22, 1}
		

References

  • M. Jones, Further remarks on the enumeration of graphs, preprint, 2001.

Crossrefs

Cf. A025174 (row sums).

Programs

  • Mathematica
    p[x_, n_] = Sum[Binomial[3*n + 1 - m, n - m]*x^m, {m, 0, n}]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%]
  • PARI
    T(n, k) = binomial(3*n+1-k, n-k);
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 13 2018

Formula

p(x,n)=Sum[Binomial[3*n + 1 - m, n - m]*x^m, {m, 0, n}];
p(x,n)=Gamma[2*n+3]*Hypergeometric2F1[1,-n-1-3*n,x]/(Gamma[1+n]*Gamma[2+2*n});

Extensions

New name from Michel Marcus, May 13 2018

A213410 G.f.: exp( Sum_{n>=1} binomial(3*n,n)^n/3^n * x^n/n ).

Original entry on oeis.org

1, 1, 13, 7330, 185307558, 201002187396362, 9357300769149011773697, 18775362849239140086719414696830, 1631039199744298058694966065590003308698494, 6159916689356522044764167426829149420348399496664634288
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2012

Keywords

Comments

Compare to the g.f. G(x) = 1 + x*G(x)^3 of A001764: G(x) = exp( Sum_{n>=1} binomial(3*n,n)/3 * x^n/n ).

Examples

			G.f.: A(x) = 1 + x + 13*x^2 + 7330*x^3 + 185307558*x^4 + 201002187396362*x^5 +...
where
log(A(x)) = x + 5^2*x^2/2 + 28^3*x^3/3 + 165^4*x^4/4 + 1001^5*x^5/5 + 6188^6*x^6/6 + 38760^7*x^7/7 +...+ A025174(n)^n*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 10; b = ConstantArray[0, nmax+1]; b[[1]] = 1; Do[b[[n+1]] = 1/n*Sum[Binomial[3*k,k]^k/3^k * b[[n-k+1]], {k, 1, n}], {n, 1, nmax}]; b  (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n, binomial(3*m, m)^m/3^m*x^m/m)+x*O(x^n)), n)}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = (1/n) * Sum_{k=1..n} binomial(3*k,k)^k/3^k * a(n-k) for n>0 with a(0)=1.

A277584 a(n) = binomial(3n-1, n-1)^2.

Original entry on oeis.org

0, 1, 25, 784, 27225, 1002001, 38291344, 1502337600, 60101954649, 2440703175625, 100300325150025, 4161829109817600, 174077451630810000, 7330421677037621904, 310467090932230849600, 13214837914326197526784, 564927069263895118093401
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2016

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(3*n-1, n-1)^2: n in [0..20]]; // Vincenzo Librandi, Oct 23 2016
  • Mathematica
    Table[Boole[n > 0] Binomial[3 n - 1, n - 1]^2, {n, 0, 16}] (* Michael De Vlieger, Oct 26 2016 *)
  • PARI
    a(n) = binomial(3*n-1, n-1)^2; \\ Michel Marcus, Oct 22 2016
    

Formula

a(n) = A025174(n)^2.
a(n) = A188662(n)/9 for n > 0.
Let the number of multisets of length k on n symbols be denoted by ((n, k)) = binomial(n+k-1, k).
a(n) = (Sum_{k=0..n} binomial(n, k)^2 * ((2*n, 2*n - k)))/5 for n > 0.

A333472 a(n) = [x^n] ( c (x/(1 + x)) )^n, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 13, 59, 276, 1317, 6371, 31131, 153292, 759428, 3780888, 18900389, 94805959, 476945913, 2405454213, 12158471195, 61574325840, 312365992620, 1587052145492, 8074474510884, 41131551386120, 209760563456920, 1070822078321520, 5471643738383781, 27982867986637151
Offset: 0

Views

Author

Peter Bala, Mar 23 2020

Keywords

Comments

Let F(x) = 1 + f(1)*x + f(2)*x^2 + ... be a power series with integer coefficients. The associated sequence u(n) := [x^n] F(x)^n is known to satisfy the Gauss congruences: u(n*p^k) == u(n*p^(k-1)) ( mod p^k ) for any prime p and positive integers n and k. For certain power series F(x), stronger congruences may hold. Examples include F(x) = (1 + x)^2, F(x) = 1/(1 - x) and F(x) = c(x), where c(x) is the o.g.f. of the Catalan numbers A000108. The associated sequences (with some differences of offset) are A000984, A001700 and A025174, respectively.
Here we take F(x) = c(x/(1 + x)) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 21*x^6 + ... (cf. A001006 and A086246) and conjecture that the associated sequence a(n) = [x^n] ( c(x/(1 + x)) )^n satisfies the supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(2*k) ) for prime p >= 5 and positive integers n and k. Cf. A333473.
More generally, we conjecture that for any positive integer r and any integer s the sequence a(r,s;n) := [x^(r*n)] ( c(x/(1 + x)) )^(s*n) also satisfies the above congruences.
Note that the sequence b(n) := [x^n] c(x)^n = A025174(n) satisfies the stronger congruences b(n*p^k) == b(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. The sequence d(n) := [x^n] ( (1 + x)*c(x/(1 + x)) )^n = A333093(n) appears to satisfy the same congruences.

Examples

			Examples of congruences:
a(11) - a(1) = 3780888 - 1 = (11^2)*31247 == 0 ( mod 11^2 ).
a(3*7) - a(3) = 41131551386120 - 13 = (7^2)*13*23671*2727841 == 0 ( mod 7^2 ).
a(5^2) - a(5) = 27982867986637151 - 276 = (5^4)*13*74687*46113049 == 0 ( mod 5^4 ).
		

Crossrefs

Programs

  • Maple
    Cat := x -> (1/2)*(1-sqrt(1-4*x))/x:
    G := x -> Cat(x/(1+x)):
    H := (x,n) -> series(G(x)^n, x, 51):
    seq(coeff(H(x, n), x, n), n = 0..25);
  • Mathematica
    Table[SeriesCoefficient[((1 + x - Sqrt[1 - 2*x - 3*x^2]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 29 2020 *)

Formula

a(n) = [x^n] ( (1 + x - sqrt(1 - 2*x - 3*x^2)) / (2*x) )^n.
a(n) ~ sqrt(((9386 + 1026*sqrt(57))^(1/3) + (9386 - 1026*sqrt(57))^(1/3) - 19)/228) * (((1261 + 57*sqrt(57))^(1/3) + (1261 - 57*sqrt(57))^(1/3) + 10)/6)^n / sqrt(Pi*n). - Vaclav Kotesovec, Mar 29 2020

A344503 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)^2*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4).

Original entry on oeis.org

1, 0, -1, 3, 0, -5, 15, 0, -28, 84, 0, -165, 495, 0, -1001, 3003, 0, -6188, 18564, 0, -38760, 116280, 0, -245157, 735471, 0, -1562275, 4686825, 0, -10015005, 30045015, 0, -64512240, 193536720, 0, -417225900, 1251677700, 0, -2707475148, 8122425444, 0, -17620076360
Offset: 0

Views

Author

Peter Luschny, May 23 2021

Keywords

Comments

Inverse binomial convolution of the Motzkin numbers.

Crossrefs

Cf. A064189 (Motzkin numbers), A005809, A025174, A344502.

Programs

  • Maple
    a := n -> add((-1)^(n - k)*binomial(n, k)^2*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4), k = 0..n): seq(simplify(a(n)), n = 0..41);

Formula

a(3*n) = binomial(3*n, n) (A005809).
a(3*n - 1) = -binomial(3*n - 1, n - 1) (A025174).
a(3*n - 2) = 0.
Conjecture D-finite with recurrence -18*(2*n+1) *(2*n-1) *(n+1) *a(n) +2*(-36*n^3+554*n^2-1128*n+27) *a(n-1) +6*(-12*n^3-188*n^2+1235*n-1618) *a(n-2) +9*(54*n^3-27*n^2-183*n+320) *a(n-3) +54*(n-3) *(9*n^2-125*n+75) *a(n-4) +81 *(n-3) *(n-4) *(6*n+127) *a(n-5)=0. - R. J. Mathar, Nov 02 2021
Previous Showing 31-40 of 43 results. Next