A260687
Triangular array with n-th row giving coefficients of polynomial Product_{k = 2..n} (k + n*t) for n >= 1.
Original entry on oeis.org
1, 2, 2, 6, 15, 9, 24, 104, 144, 64, 120, 770, 1775, 1750, 625, 720, 6264, 20880, 33480, 25920, 7776, 5040, 56196, 250096, 571095, 708295, 453789, 117649, 40320, 554112, 3127040, 9433088, 16486400, 16744448, 9175040, 2097152, 362880, 5973264, 41229324, 156498804
Offset: 1
Triangle begins
...1
...2 2
...6 15 9
..24 104 144 64
.120 770 1775 1750 625
.720 6264 20880 33480 25920 7776
5040 56196 250096 571095 708295 453789 117649
...
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998
-
seq(seq(coeff(mul(n*t + k, k = 2 .. n), t, i), i = 0..n-1), n = 1..10);
A309955
a(n) = [x^n] (1 + p(x))^n, where p(x) is the g.f. of A000040.
Original entry on oeis.org
1, 2, 10, 59, 362, 2287, 14707, 95762, 629386, 4166627, 27743445, 185602188, 1246543559, 8399791922, 56762121398, 384513835219, 2610322687850, 17753944125159, 120954505004605, 825274753259894, 5638438272353597, 38569743775323134, 264127692090124488
Offset: 0
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, ithprime(n),
(h-> add(b(j, h)*b(n-j, i-h), j=0..n))(iquo(i, 2))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..31);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, Prime[n],
Function[h, Sum[b[j, h]*b[n-j, i-h], {j, 0, n}]][Quotient[i, 2]]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
A360546
Triangle read by rows: T(n, m) = (n+1-m)*C(2*n+2-m, m)*C(3*n-3*m+2, n-m+1)/(2*n-m+2).
Original entry on oeis.org
1, 5, 2, 28, 20, 3, 165, 168, 50, 4, 1001, 1320, 588, 100, 5, 6188, 10010, 5940, 1568, 175, 6, 38760, 74256, 55055, 19800, 3528, 280, 7, 245157, 542640, 482664, 220220, 54450, 7056, 420, 8, 1562275, 3922512, 4069800, 2252432, 715715, 130680, 12936, 600, 9
Offset: 0
Triangle begins:
1;
5, 2;
28, 20, 3;
165, 168, 50, 4;
1001, 1320, 588, 100, 5;
6188, 10010, 5940, 1568, 175, 6;
-
A360546 := proc(n, k) m := n-k+1; (1/3)*binomial(3*m, m)*binomial(m + n, k) end:
seq(print(seq(A360546(n, k), k = 0..n)), n = 0..8); # Peter Luschny, Feb 11 2023
-
T(n,m):=if n
A259613
a(n) = binomial(6*n,2*n)/3, n>0, a(0)=1.
Original entry on oeis.org
1, 5, 165, 6188, 245157, 10015005, 417225900, 17620076360, 751616304549, 32308782859535, 1397281501935165, 60727722660586800, 2650087220696342700, 116043807643289338428, 5096278545356362962504, 224377658168860057076688
Offset: 0
-
[1] cat [Binomial(6*n,2*n)/3: n in [1..20]]; // Vincenzo Librandi, Jul 01 2015
-
Join[{1}, Table[Binomial[6 n, 2 n]/3, {n, 30}]] (* Vincenzo Librandi, Jul 01 2015 *)
-
vector(20,n, n--; if (n==0, 1, binomial(6*n,2*n)/3)) \\ Michel Marcus, Jul 01 2015
A309682
G.f.: C(x)*C(2*x^2)*C(3*x^3)*..., where C(x) is the g.f. for A000108.
Original entry on oeis.org
1, 1, 4, 10, 33, 81, 282, 762, 2599, 7979, 27343, 89371, 315256, 1078498, 3857048, 13651786, 49475282, 178736186, 655247192, 2401663838, 8883371016, 32906649488, 122619768860, 457836275272, 1716620421629, 6449729802639, 24308647131627, 91800114425437
Offset: 0
-
C:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
b:= proc(n, i) option remember; `if`(n=0 or i=1,
C(n), add(C(j)*i^j*b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Aug 23 2019
-
nmax = 30; CoefficientList[Series[Product[Sum[CatalanNumber[k]*j^k*x^(j*k), {k, 0, nmax/j}], {j, 1, nmax}], {x, 0, nmax}], x]
nmax = 30; CoefficientList[Series[Product[(1 - Sqrt[1 - 4*k*x^k])/(2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
A144484
Triangle read by rows: T(n, k) = binomial(3*n+1-k, n-k) for n, k >= 0.
Original entry on oeis.org
1, 4, 1, 21, 6, 1, 120, 36, 8, 1, 715, 220, 55, 10, 1, 4368, 1365, 364, 78, 12, 1, 27132, 8568, 2380, 560, 105, 14, 1, 170544, 54264, 15504, 3876, 816, 136, 16, 1, 1081575, 346104, 100947, 26334, 5985, 1140, 171, 18, 1, 6906900, 2220075, 657800, 177100
Offset: 0
{1},
{4, 1},
{21, 6, 1},
{120, 36, 8, 1},
{715, 220, 55, 10, 1},
{4368, 1365, 364, 78, 12, 1},
{27132, 8568, 2380, 560, 105, 14, 1},
{170544, 54264, 15504, 3876, 816, 136, 16, 1},
{1081575, 346104, 100947, 26334, 5985, 1140, 171, 18, 1},
{6906900, 2220075, 657800, 177100, 42504, 8855, 1540, 210, 20, 1},
{44352165, 14307150, 4292145, 1184040, 296010, 65780, 12650, 2024, 253, 22, 1}
- M. Jones, Further remarks on the enumeration of graphs, preprint, 2001.
-
p[x_, n_] = Sum[Binomial[3*n + 1 - m, n - m]*x^m, {m, 0, n}]; Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[%]
-
T(n, k) = binomial(3*n+1-k, n-k);
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 13 2018
A213410
G.f.: exp( Sum_{n>=1} binomial(3*n,n)^n/3^n * x^n/n ).
Original entry on oeis.org
1, 1, 13, 7330, 185307558, 201002187396362, 9357300769149011773697, 18775362849239140086719414696830, 1631039199744298058694966065590003308698494, 6159916689356522044764167426829149420348399496664634288
Offset: 0
G.f.: A(x) = 1 + x + 13*x^2 + 7330*x^3 + 185307558*x^4 + 201002187396362*x^5 +...
where
log(A(x)) = x + 5^2*x^2/2 + 28^3*x^3/3 + 165^4*x^4/4 + 1001^5*x^5/5 + 6188^6*x^6/6 + 38760^7*x^7/7 +...+ A025174(n)^n*x^n/n +...
-
nmax = 10; b = ConstantArray[0, nmax+1]; b[[1]] = 1; Do[b[[n+1]] = 1/n*Sum[Binomial[3*k,k]^k/3^k * b[[n-k+1]], {k, 1, n}], {n, 1, nmax}]; b (* Vaclav Kotesovec, Mar 06 2014 *)
-
{a(n)=polcoeff(exp(sum(m=1, n, binomial(3*m, m)^m/3^m*x^m/m)+x*O(x^n)), n)}
for(n=0,15,print1(a(n),", "))
A277584
a(n) = binomial(3n-1, n-1)^2.
Original entry on oeis.org
0, 1, 25, 784, 27225, 1002001, 38291344, 1502337600, 60101954649, 2440703175625, 100300325150025, 4161829109817600, 174077451630810000, 7330421677037621904, 310467090932230849600, 13214837914326197526784, 564927069263895118093401
Offset: 0
A333472
a(n) = [x^n] ( c (x/(1 + x)) )^n, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 1, 3, 13, 59, 276, 1317, 6371, 31131, 153292, 759428, 3780888, 18900389, 94805959, 476945913, 2405454213, 12158471195, 61574325840, 312365992620, 1587052145492, 8074474510884, 41131551386120, 209760563456920, 1070822078321520, 5471643738383781, 27982867986637151
Offset: 0
Examples of congruences:
a(11) - a(1) = 3780888 - 1 = (11^2)*31247 == 0 ( mod 11^2 ).
a(3*7) - a(3) = 41131551386120 - 13 = (7^2)*13*23671*2727841 == 0 ( mod 7^2 ).
a(5^2) - a(5) = 27982867986637151 - 276 = (5^4)*13*74687*46113049 == 0 ( mod 5^4 ).
-
Cat := x -> (1/2)*(1-sqrt(1-4*x))/x:
G := x -> Cat(x/(1+x)):
H := (x,n) -> series(G(x)^n, x, 51):
seq(coeff(H(x, n), x, n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x - Sqrt[1 - 2*x - 3*x^2]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 29 2020 *)
A344503
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)^2*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4).
Original entry on oeis.org
1, 0, -1, 3, 0, -5, 15, 0, -28, 84, 0, -165, 495, 0, -1001, 3003, 0, -6188, 18564, 0, -38760, 116280, 0, -245157, 735471, 0, -1562275, 4686825, 0, -10015005, 30045015, 0, -64512240, 193536720, 0, -417225900, 1251677700, 0, -2707475148, 8122425444, 0, -17620076360
Offset: 0
-
a := n -> add((-1)^(n - k)*binomial(n, k)^2*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4), k = 0..n): seq(simplify(a(n)), n = 0..41);
Comments