A026392
T(n,[ n/2 ]), where T is the array in A026386.
Original entry on oeis.org
1, 2, 4, 8, 17, 34, 75, 150, 339, 678, 1558, 3116, 7247, 14494, 34016, 68032, 160795, 321590, 764388, 1528776, 3650571, 7301142, 17501619, 35003238, 84179877, 168359754, 406020930, 812041860, 1963073865, 3926147730
Offset: 1
A126182
Let P be Pascal's triangle A007318 and let N be Narayana's triangle A001263, both regarded as lower triangular matrices. Sequence gives triangle obtained from P*N, read by rows.
Original entry on oeis.org
1, 2, 1, 4, 5, 1, 8, 18, 9, 1, 16, 56, 50, 14, 1, 32, 160, 220, 110, 20, 1, 64, 432, 840, 645, 210, 27, 1, 128, 1120, 2912, 3150, 1575, 364, 35, 1, 256, 2816, 9408, 13552, 9534, 3388, 588, 44, 1, 512, 6912, 28800, 53088, 49644, 24822, 6636, 900, 54, 1
Offset: 0
The triangle P begins
1,
1, 1
1, 2, 1
1, 3, 3, 1, ...
and T begins
1,
1, 1,
1, 3, 1,
1, 6, 6, 1,
1, 10, 20, 10, 1, ...
The product P*T gives
1,
2, 1,
4, 5, 1,
8, 18, 9, 1,
16, 56, 50, 14, 1, ...
-
T:=proc(n,k) if k=0 then 2^n elif k<=n then binomial(n+1,k)*sum(binomial(k,n-k-j)*binomial(n+1-k,j)*2^j,j=n-2*k..n-k)/(n+1) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
t[n_, 0] := 2^n; t[n_, k_] := Binomial[n+1, k]*Sum[Binomial[k, n-k-j]*Binomial[n+1-k, j]*2^j, {j, n-2*k, n-k}]/(n+1); Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 12 2013 *)
nmax = 10; n[x_, y_] := (1-x*(1+y) - Sqrt[(1-x*(1+y))^2 - 4*y*x^2])/(2*x); s = Series[(n[x/(1-x), y]-1)/x, {x, 0, nmax+1}, {y, 0, nmax+1}];t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, nmax}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Apr 16 2015, after Vladimir Kruchinin *)
-
tabl(nn) = {mP = matrix(nn, nn, n, k, binomial(n-1, k-1)); mN = matrix(nn, nn, n, k, binomial(n-1, k-1) * binomial(n, k-1) / k); mprod = mP*mN; for (n=1, nn, for (k=1, n, print1(mprod[n, k], ", ");); print(););} \\ Michel Marcus, Apr 16 2015
A171651
Triangle T, read by rows : T(n,k) = A007318(n,k)*A005773(n+1-k).
Original entry on oeis.org
1, 2, 1, 5, 4, 1, 13, 15, 6, 1, 35, 52, 30, 8, 1, 96, 175, 130, 50, 10, 1, 267, 576, 525, 260, 75, 12, 1, 750, 1869, 2016, 1225, 455, 105, 14, 1, 2123, 6000, 7476, 5376, 2450, 728, 140, 16, 1, 6046, 19107, 27000, 22428, 12096, 4410, 1092, 180, 18, 1
Offset: 0
Triangle begins:
1;
2, 1;
5, 4, 1;
13, 15, 6, 1;
35, 52, 30, 8, 1;
...
-
b:= proc(u, d, t) option remember; `if`(u=0 and d=0, 1/2,
expand(`if`(u=0, 0, b(u-1, d, 2)*`if`(t=3, x, 1))
+`if`(d=0, 0, b(u, d-1, `if`(t=2, 3, 1)))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n+1$2, 1)):
seq(T(n), n=0..12); # Alois P. Heinz, Apr 29 2015
# second program:
A171651:= (n, k)-> binomial(n,k)*add((-1)^(n-k-j)*binomial(n-k,j)*binomial(2*j+1,j+1),j=0..n-k): seq(print(seq(A171651(n, k), k=0..n)), n=0..9); # Mélika Tebni, Dec 16 2023
-
b[u_, d_, t_] := b[u, d, t] = If[u == 0 && d == 0, 1/2, Expand[If[u == 0, 0, b[u-1, d, 2]*If[t == 3, x, 1]] + If[d == 0, 0, b[u, d-1, If[t == 2, 3, 1]]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n+1, n+1, 1] ];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 21 2016, after Alois P. Heinz *)
A026387
a(n) = number of integer strings s(0),...,s(n) counted by array T in A026386 that have s(n)=0; also a(n) = T(2n,n).
Original entry on oeis.org
2, 8, 34, 150, 678, 3116, 14494, 68032, 321590, 1528776, 7301142, 35003238, 168359754, 812041860, 3926147730, 19022666310, 92338836390, 448968093320, 2186194166950, 10659569748370, 52037098259090, 254308709196660
Offset: 0
A129164
Sum of pyramid weights in all skew Dyck paths of semilength n.
Original entry on oeis.org
1, 5, 22, 97, 436, 1994, 9241, 43257, 204052, 968440, 4619011, 22120630, 106300507, 512321437, 2475395302, 11986728457, 58156146652, 282640193312, 1375737276787, 6705522150972, 32724071280517, 159878425878847, 781910419686412, 3827639591654862, 18753350784435811
Offset: 1
a(2)=5 because the pyramid weights of the paths (UD)(UD), (UUDD) and U(UD)L are 2, 2 and 1, respectively (the maximal pyramids are shown between parentheses).
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- A. Denise and R. Simion, Two combinatorial statistics on Dyck paths, Discrete Math., 137, 1995, 155-176.
- E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
-
G:=(1/sqrt(1-6*z+5*z^2)-1/(1-z))/2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=1..26);
-
Rest[CoefficientList[Series[(1/Sqrt[1-6*x+5*x^2]-1/(1-x))/2, {x, 0, 20}], x]] (* Vaclav Kotesovec, Oct 20 2012 *)
a[n_] := (Hypergeometric2F1[1/2, -n, 1, -4]-1)/2; Array[a, 25] (* Jean-François Alcover, Oct 11 2016, after Vladimir Kruchinin *)
-
a(n):=n*sum(sum((binomial(-m+2*k-1,k-1)*binomial(n-1,k-1))/k,k,m,n), m,1,n); /* Vladimir Kruchinin, Oct 07 2011 */
-
a(n):=sum(binomial(n,k)*binomial(2*k,k),k,1,n)/2; /* Vladimir Kruchinin, Oct 11 2016 */
-
A129164 = lambda n: n*hypergeometric([1, 3/2, 1-n], [2, 2], -4)
[simplify(A129164(n)) for n in (1..25)] # Peter Luschny, Sep 16 2014
A171224
Riordan array (f(x),x*f(x)) where f(x) is the g.f. of A117641.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 11, 6, 3, 0, 1, 42, 23, 9, 4, 0, 1, 167, 90, 36, 12, 5, 0, 1, 684, 365, 144, 50, 15, 6, 0, 1, 2867, 1518, 595, 204, 65, 18, 7, 0, 1, 12240, 6441, 2511, 858, 270, 81, 21, 8, 0, 1, 53043, 27774, 10782, 3672, 1155, 342, 98, 24, 9, 0, 1
Offset: 0
Triangle begins
1;
0, 1;
1, 0, 1;
3, 2, 0, 1;
11, 6, 3, 0, 1;
42, 23, 9, 4, 0, 1;
167, 90, 36, 12, 5, 0, 1;
...
Production array begins
0, 1;
1, 0, 1;
3, 1, 0, 1;
9, 3, 1, 0, 1;
27, 9, 3, 1, 0, 1;
81, 27, 9, 3, 1, 0, 1;
243, 81, 27, 9, 3, 1, 0, 1;
... - _Philippe Deléham_, Mar 04 2013
-
[[((k+1)/(n+1))*(&+[3^(n-k-2*j)*Binomial(n+1,j)*Binomial(n-k-j-1, n-k-2*j): j in [0..Floor((n-k)/2)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 04 2019
-
T[n_, k_]:= (k+1)/(n+1)*Sum[3^(n-k-2*j)*Binomial[n+1,j]*Binomial[n-k-j-1, n-k-2*j], {j, 0, Floor[(n-k)/2]}]; Table[T[n, k], {n,0,10}, {k,0,n} ]//Flatten (* G. C. Greubel, Apr 04 2019 *)
-
T(n,k):=(k+1)/(n+1)*sum(3^(n-k-2*j)*binomial(n+1,j)*binomial(n-k-j-1,n-k-2*j),j,0,floor((n-k)/2)); /* Vladimir Kruchinin, Apr 04 2019 */
-
{T(n,k) = ((k+1)/(n+1))*sum(j=0, floor((n-k)/2), 3^(n-k-2*j) *binomial(n+1,j)*binomial(n-k-j-1, n-k-2*j))}; \\ G. C. Greubel, Apr 04 2019
-
[[((k+1)/(n+1))*sum(3^(n-k-2*j)*binomial(n+1,j)*binomial(n-k-j-1, n-k-2*j) for j in (0..floor((n-k)/2))) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 04 2019
A364647
G.f. satisfies A(x) = 1/(1 - 5*x) - x*A(x)^3.
Original entry on oeis.org
1, 4, 13, 38, 135, 677, 3538, 15868, 63313, 268430, 1348190, 7038185, 33328258, 144159428, 642323050, 3213846836, 16700677289, 80935833050, 363843867265, 1660048399600, 8276473557820, 42830085070355, 210286731046320, 967456811687945, 4476690297795850
Offset: 0
-
a(n) = sum(k=0, n, (-1)^k*5^(n-k)*binomial(n+k, 2*k)*binomial(3*k, k)/(2*k+1));
A026380
a(n) = T(n,[ n/2 ]), where T is the array in A026374.
Original entry on oeis.org
1, 3, 4, 11, 17, 45, 75, 195, 339, 873, 1558, 3989, 7247, 18483, 34016, 86515, 160795, 408105, 764388, 1936881, 3650571, 9238023, 17501619, 44241261, 84179877, 212601015, 406020930, 1024642875, 1963073865, 4950790605
Offset: 0
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
A084536
Triangular array related to Motzkin triangle A026300.
Original entry on oeis.org
1, 1, 3, 1, 6, 10, 1, 9, 29, 36, 1, 12, 57, 132, 137, 1, 15, 94, 315, 590, 543, 1, 18, 140, 612, 1629, 2628, 2219, 1, 21, 195, 1050, 3605, 8127, 11732, 9285, 1, 24, 259, 1656, 6950, 19992, 39718, 52608, 39587, 1, 27, 332, 2457, 12177, 42498, 106644, 191754
Offset: 0
Triangle begins
1;
1, 3;
1, 6, 10;
1, 9, 29, 36;
1, 12, 57, 132, 137; ...
- A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
A124431
a(n) = Sum_{k=0..n} 2^k*C([(n+k)/2],k)*C([(n+k+1)/2],k) where [x]=floor(x).
Original entry on oeis.org
1, 3, 9, 29, 97, 331, 1145, 4001, 14089, 49915, 177713, 635293, 2278841, 8198227, 29567729, 106872961, 387038993, 1404052659, 5101219929, 18559193245, 67605310097, 246541193883, 899999057385, 3288522934433, 12026324883865
Offset: 0
G.f. = 1 + 3*x + 9*x^2 + 29*x^3 + 97*x^4 + 331*x^5 + 1145*x^6 + 4001*x^7 + ...
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt((1+x^2)/(1-4*x+x^2)) -1)/(2*x) )); // G. C. Greubel, Feb 26 2019
-
Table[Sum[2^k Binomial[Floor[(n+k)/2],k]Binomial[Floor[(n+k+1)/2],k],{k,0,n}],{n,0,30}] (* Harvey P. Dale, May 20 2012 *)
CoefficientList[Series[(Sqrt[(1+x^2)/(1-4*x+x^2)] -1)/(2*x), {x,0,30}],x] (* G. C. Greubel, Feb 26 2019 *)
-
a(n)=sum(k=0,n,2^k*binomial((n+k)\2,k)*binomial((n+k+1)\2,k))
-
my(x='x+O('x^30)); Vec((sqrt((1+x^2)/(1-4*x+x^2)) -1)/(2*x)) \\ G. C. Greubel, Feb 26 2019
-
((sqrt((1+x^2)/(1-4*x+x^2)) -1)/(2*x)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 26 2019
Comments