cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A000001 Number of groups of order n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1, 15, 1, 2, 1, 12, 1, 10, 1, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Also, number of nonisomorphic subgroups of order n in symmetric group S_n. - Lekraj Beedassy, Dec 16 2004
Also, number of nonisomorphic primitives (antiderivatives) of the combinatorial species Lin[n-1], or X^{n-1}; see Rajan, Summary item (i). - Nicolae Boicu, Apr 29 2011
In (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), a(n) is called the "group number of n", denoted by gnu(n), and the first occurrence of k is called the "minimal order attaining k", denoted by moa(k) (see A046057). - Daniel Forgues, Feb 15 2017
It is conjectured in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008) that the sequence n -> a(n) -> a(a(n)) = a^2(n) -> a(a(a(n))) = a^3(n) -> ... -> consists ultimately of 1s, where a(n), denoted by gnu(n), is called the "group number of n". - Muniru A Asiru, Nov 19 2017
MacHale (2020) shows that there are infinitely many values of n for which there are more groups than rings of that order (cf. A027623). He gives n = 36355 as an example. It would be nice to have enough values of n to create an OEIS entry for them. - N. J. A. Sloane, Jan 02 2021
I conjecture that a(i) * a(j) <= a(i*j) for all nonnegative integers i and j. - Jorge R. F. F. Lopes, Apr 21 2024

Examples

			Groups of orders 1 through 10 (C_n = cyclic, D_n = dihedral of order n, Q_8 = quaternion, S_n = symmetric):
1: C_1
2: C_2
3: C_3
4: C_4, C_2 X C_2
5: C_5
6: C_6, S_3=D_6
7: C_7
8: C_8, C_4 X C_2, C_2 X C_2 X C_2, D_8, Q_8
9: C_9, C_3 X C_3
10: C_10, D_10
		

References

  • S. R. Blackburn, P. M. Neumann, and G. Venkataraman, Enumeration of Finite Groups, Cambridge, 2007.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 302, #35.
  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 134.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 150.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, Section 6.6 'Fibonacci Numbers' pp. 281-283.
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • D. Joyner, 'Adventures in Group Theory', Johns Hopkins Press. Pp. 169-172 has table of groups of orders < 26.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.24, p. 481.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The main sequences concerned with group theory are A000001 (this one), A000679, A001034, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A000688, A060689, A051532.
A003277 gives n for which A000001(n) = 1, A063756 (partial sums).
A046057 gives first occurrence of each k.
A027623 gives the number of rings of order n.

Programs

  • GAP
    A000001 := Concatenation([0], List([1..500], n -> NumberSmallGroups(n))); # Muniru A Asiru, Oct 15 2017
  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [1..1000] ]; // John Cannon, Dec 23 2006
    
  • Maple
    GroupTheory:-NumGroups(n); # with(GroupTheory); loads this command - N. J. A. Sloane, Dec 28 2017
  • Mathematica
    FiniteGroupCount[Range[100]] (* Harvey P. Dale, Jan 29 2013 *)
    a[ n_] := If[ n < 1, 0, FiniteGroupCount @ n]; (* Michael Somos, May 28 2014 *)

Formula

From Mitch Harris, Oct 25 2006: (Start)
For p, q, r primes:
a(p) = 1, a(p^2) = 2, a(p^3) = 5, a(p^4) = 14, if p = 2, otherwise 15.
a(p^5) = 61 + 2*p + 2*gcd(p-1,3) + gcd(p-1,4), p >= 5, a(2^5)=51, a(3^5)=67.
a(p^e) ~ p^((2/27)e^3 + O(e^(8/3))).
a(p*q) = 1 if gcd(p,q-1) = 1, 2 if gcd(p,q-1) = p. (p < q)
a(p*q^2) is one of the following:
---------------------------------------------------------------------------
| a(p*q^2) | p*q^2 of the form | Sequences (p*q^2) |
---------- ------------------------------------------ ---------------------
| (p+9)/2 | q == 1 (mod p), p odd | A350638 |
| 5 | p=3, q=2 => p*q^2 = 12 |Special case with A_4|
| 5 | p=2, q odd | A143928 |
| 5 | p == 1 (mod q^2) | A350115 |
| 4 | p == 1 (mod q), p > 3, p !== 1 (mod q^2) | A349495 |
| 3 | q == -1 (mod p), p and q odd | A350245 |
| 2 | q !== +-1 (mod p) and p !== 1 (mod q) | A350422 |
---------------------------------------------------------------------------
[Table from Bernard Schott, Jan 18 2022]
a(p*q*r) (p < q < r) is one of the following:
q == 1 (mod p) r == 1 (mod p) r == 1 (mod q) a(p*q*r)
-------------- -------------- -------------- --------
No No No 1
No No Yes 2
No Yes No 2
No Yes Yes 4
Yes No No 2
Yes No Yes 3
Yes Yes No p+2
Yes Yes Yes p+4
[table from Derek Holt].
(End)
a(n) = A000688(n) + A060689(n). - R. J. Mathar, Mar 14 2015

Extensions

More terms from Michael Somos
Typo in b-file description fixed by David Applegate, Sep 05 2009

A037291 Number of rings with 1 containing n elements.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 11, 4, 1, 1, 4, 1, 1, 1, 50, 1, 4, 1, 4, 1, 1, 1, 11, 4, 1, 12, 4, 1, 1, 1, 208, 1, 1, 1, 16, 1, 1, 1, 11, 1, 1, 1, 4, 4, 1, 1, 50, 4, 4, 1, 4, 1, 12, 1, 11, 1, 1, 1, 4, 1, 1, 4
Offset: 1

Views

Author

Christian G. Bower, Jun 15 1998

Keywords

Comments

Many authors simply call these "rings". They are also known as unital rings, rings with unity, or rings with identity. - Charles R Greathouse IV, Aug 12 2015
Is this sequence multiplicative? That is, if p and q are distinct primes, is it true that a(p^i*q^j) = a(p^i)*a(q^j)? - Jianing Song, Oct 26 2019. The answer is yes - see the Eric M. Rains link. - N. J. A. Sloane, Oct 27 2019

Crossrefs

Extensions

a(16) and a(32)-a(63) from Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Sep 29 2000
Keyword 'mult' added by Jianing Song, Feb 02 2020
a(54) corrected by Andrey Zabolotskiy, Feb 02 2023

A037289 Number of commutative rings with n elements.

Original entry on oeis.org

1, 2, 2, 9, 2, 4, 2, 34, 9, 4, 2, 18, 2, 4, 4, 162, 2, 18, 2, 18, 4, 4, 2, 68, 9, 4, 36, 18, 2, 8, 2
Offset: 1

Views

Author

Christian G. Bower, Jun 15 1998

Keywords

Comments

These rings do not necessarily contain an identity element.
This sequence is multiplicative. See the reference "The Numbers of Small Rings" below, which proves the result for all rings; restricting to commutative rings only makes the proof easier. - Conjecture by Mitch Harris, Apr 19 2005, proof found by Franklin T. Adams-Watters, Jul 10 2012

Crossrefs

Formula

a(p^n) = p^(2/27 * n^3 + O(n^2.5)), see Blackburn & McLean. - Charles R Greathouse IV, Jul 13 2022

Extensions

a(16) from Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Sep 29 2000, who reports that the sequence continues a(32) = ? (> 876), a(33) = 4, 4, 4, 81, 2, 4, 4, 68, 2, 8, 2, 18, 18, 4, 2, 324, 9, 18, 4, 18, 2, 72, 4, 68, 4, 4, 2, 36, 2, 4, 18 = a(63), a(64) = ? (> 12696)

A127707 Number of commutative rings with 1 containing n elements.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 10, 4, 1, 1, 4, 1, 1, 1, 37, 1, 4, 1, 4, 1, 1, 1, 10, 4, 1, 11, 4, 1, 1, 1, 109, 1, 1, 1, 16, 1, 1, 1, 10, 1, 1, 1, 4, 4, 1, 1, 37, 4, 4, 1, 4, 1, 11, 1, 10, 1, 1, 1, 4, 1, 1, 4
Offset: 1

Views

Author

Hugues Randriam (randriam(AT)enst.fr), Jan 24 2007

Keywords

Comments

Is this a multiplicative function?
Answer: yes! See the Eric M. Rains link for a proof for the result for all unital rings; restricting to commutative rings does not affect the essence of the proof. - Jianing Song, Feb 02 2020

Crossrefs

Formula

a(n) = A037291(n) - A127708(n). - Bernard Schott, Apr 19 2022

Extensions

Keyword 'mult' added by Jianing Song, Feb 02 2020
a(32)-a(63) using Nöbauer's data added by Andrey Zabolotskiy, Apr 18 2022
a(32) = 109 corrected by Bernard Schott, Apr 19 2022

A037234 a(n) = number of rings with n elements.

Original entry on oeis.org

0, 1, 2, 2, 11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4, 4, 390, 2, 22, 2, 22, 4, 4, 2, 104, 11, 4, 59, 22, 2, 8, 2
Offset: 0

Views

Author

Keywords

Comments

From M. F. Hasler, Jan 05 2021 (Start)
This entry complements the "main entry" A027623 which for all n >= 1 also gives the number of rings with n elements, but which has A027623(0) = 1 by explicit definition. (There is no ring with no elements, since a ring is an abelian group and therefore must have at least the 0 element.)
a(32) is presently unknown: see A027623 for lower bounds and values a(n) for n > 32. (End)

Examples

			From _Bernard Schott_, Jan 06 2021: (Start)
a(1) = 1: The ring with only one element, 0, is called the zero ring.
a(2) = 2: These two rings of order 2 with elements {0, a} form an abelian group for operator +: 0+0 = 0, 0+a = a+0 = a, a+a = 0.
   - The first ring is obtained for  multiplication defined by: 0*0 = 0*a = a*0 = 0, a*a = a. This ring is isomorphic to the field Z/2Z.
   - The second ring is given for 0*0 = 0*a = a*0 = a*a = 0. Here a is a divisor of 0. (End)
		

Crossrefs

A027623 is the main entry for this sequence.

Programs

  • PARI
    apply( A037234(n, e=0)=if( !e, vecprod([call(self(),f) | f <- factor(n)~]), e<3, [if(n,2), 11][e], e==3, if(n>2,3*sqrtnint(n,3),2)+50, n>2 || e>4, /*error*/("not yet implemented"), 390), [0..63]) \\ M. F. Hasler, Jan 05 2021

Formula

From M. F. Hasler, Jan 05 2021: (Start)
a(p) = 2 for any prime p.
a(m n) = a(m) a(n) when gcd(m,n) = 1. (Multiplicativity.)
a(p^2) = 11 for any prime p.
a(p^3) = 3p + 50 for any odd prime p [Antipkin & Elizarov]. (End)

A038538 Number of semisimple rings with n elements.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 8, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 13, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 6, 6, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 8, 1, 2, 2
Offset: 1

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

Comments

Enumeration uses Wedderburn-Artin theorem and fact that a finite division ring is a field.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3 * 3 and 375 = 3 * 5^3 both have prime signature (3,1).

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, pp. 274-276.
  • John Knopfmacher, Abstract analytic number theory, North-Holland, 1975, pp. 63-64.
  • T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, 2001.

Crossrefs

Programs

  • Mathematica
    With[{emax = 7}, f[e_] := f[e] = Coefficient[Series[Product[1/(1 - x^(j*k^2)), {k, 1, Floor[Sqrt[emax]] + 1}, {j, 1, Floor[emax/k^2] + 1}], {x, 0, emax}], x, e]; a[1] = 1; a[n_] := Times @@ f /@ FactorInteger[n][[;; , 2]]; Array[a, 2^emax]] (* Amiram Eldar, Jan 31 2024, using code by Vaclav Kotesovec at A004101 *)
  • PARI
    v004101from1 = [1, 2, 3, 6, 8, 13, 18, 29, 40, 58, 79, 115, 154, 213, 284, 391, 514, 690, 900, 1197]; \\ From the data-section of A004101.
    A004101(n) = v004101from1[n];
    vecproduct(v) = { my(m=1); for(i=1,#v,m *= v[i]); m; };
    A038538(n) = vecproduct(apply(e -> A004101(e), factorint(n)[, 2])); \\ Antti Karttunen, Nov 18 2017

Formula

Multiplicative with a(p^k) = A004101(k).
For all n, a(A002110(n)) = a(A005117(n)) = 1.
From Amiram Eldar, Jan 31 2024: (Start)
Dirichlet g.f.: Product_{k,m>=1} zeta(k*m^2*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2.499616... = A244285 (see A123030 for a more precise asymptotic formula). (End)

A127708 Number of non-commutative rings with 1 containing n elements.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 99, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Hugues Randriam (randriam(AT)enst.fr), Jan 24 2007, Jan 29 2007

Keywords

Comments

We consider rings in which multiplication is associative and has a unit, but where there is at least one pair of non-commuting elements.

Examples

			a(n)=0 for n<=7 and a(8)=1, so all rings (with unit) of cardinality at most 7 are commutative, while the smallest non-commutative ring (with unit) has cardinality 8 and is unique up to isomorphism; it can be represented as the ring of upper-triangular matrices of size 2 over F_2.
A037291(32) = 208, A127707(32) = 109, hence a(32) = 208 - 109 = 99.
		

Crossrefs

Formula

a(n) = A037291(n) - A127707(n). - Bernard Schott, Apr 19 2022

Extensions

a(32)-a(63) from Bernard Schott, Apr 19 2022
a(54) corrected by Andrey Zabolotskiy, Feb 02 2023

A037290 Number of self-converse rings (isomorphic to inverse) with n elements.

Original entry on oeis.org

1, 2, 2, 9, 2, 4, 2, 40, 9, 4, 2, 18, 2, 4, 4, 242, 2, 18, 2, 18, 4, 4, 2, 80, 9, 4, 47, 18, 2, 8, 2
Offset: 1

Views

Author

Christian G. Bower, Jun 15 1998

Keywords

Crossrefs

Extensions

a(16) and a(27) from Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Oct 17 2000

A038036 Number of nonisomorphic and nonantiisomorphic rings with n elements.

Original entry on oeis.org

1, 2, 2, 10, 2, 4, 2, 46, 10, 4, 2, 20, 2, 4, 4, 316, 2, 20, 2, 20, 4, 4, 2, 92, 10, 4, 53, 20, 2, 8, 2
Offset: 1

Views

Author

Christian G. Bower, Jun 15 1998

Keywords

Comments

Number of rings of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the * operator). - Jianing Song, Oct 26 2019

Crossrefs

Formula

a(n) = (A027623(n)+A037290(n))/2. - Jianing Song, Oct 26 2019

Extensions

a(16)-a(31) added by Jianing Song, Oct 26 2019

A339948 Number of non-isomorphic generalized quaternion rings over Z/nZ.

Original entry on oeis.org

1, 1, 4, 7, 4, 16, 4, 16, 10, 16, 4, 40, 4, 16, 16, 36, 4, 40, 4, 40, 16, 16, 4, 80, 10, 16, 20, 40, 4, 64, 4, 52, 16, 16, 16
Offset: 1

Views

Author

Keywords

Comments

Generalized quaternion rings over Z/nZ are of the form Z_n/(x^2-a, y^2-b, xy+yx).

Examples

			For n=2 all such rings are isomorphic to Z_n<x,y>/(x^2, y^2, xy+yx), so a(2)=1.
For n=4:
  Z_n<x,y>/(x^2,   y^2,   xy+yx),
  Z_n<x,y>/(x^2,   y^2-1, xy+yx),
  Z_n<x,y>/(x^2,   y^2-2, xy+yx),
  Z_n<x,y>/(x^2,   y^2-3, xy+yx),
  Z_n<x,y>/(x^2-1, y^2-1, xy+yx),
  Z_n<x,y>/(x^2-1, y^2-2, xy+yx),
  Z_n<x,y>/(x^2-3, y^2-3, xy+yx),
so a(4)=7.
		

Crossrefs

Programs

  • Mathematica
    Clear[phi]; phi[1] = phi[2] = 1; phi[4] = 7; phi[8] = 16;
    phi[16] = 36; phi[p_, s_] := 2 s^2 + 2;
    phi[n_] :=  Module[{aux = FactorInteger[n]},Product[phi[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]];
    Table[phi[i], {i,1, 35}]

Formula

If n is odd then a(n) = A286779(n).
Showing 1-10 of 22 results. Next