cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A029662 Numbers to the left of the central numbers of the (2,1)-Pascal triangle A029653.

Original entry on oeis.org

2, 2, 2, 5, 2, 7, 2, 9, 16, 2, 11, 25, 2, 13, 36, 55, 2, 15, 49, 91, 2, 17, 64, 140, 196, 2, 19, 81, 204, 336, 2, 21, 100, 285, 540, 714, 2, 23, 121, 385, 825, 1254, 2, 25, 144, 506, 1210, 2079, 2640, 2, 27, 169, 650, 1716, 3289, 4719, 2, 29, 196, 819, 2366, 5005
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A029663 Numbers to the right of the central elements of the (2,1)-Pascal triangle A029653 that are different from 1.

Original entry on oeis.org

4, 5, 14, 6, 20, 7, 50, 27, 8, 77, 35, 9, 182, 112, 44, 10, 294, 156, 54, 11, 672, 450, 210, 65, 12, 1122, 660, 275, 77, 13, 2508, 1782, 935, 352, 90, 14, 4290, 2717, 1287, 442, 104, 15, 9438, 7007, 4004, 1729, 546, 119, 16, 16445, 11011, 5733, 2275, 665, 135
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A029664 Odd numbers to the left of the central elements of the (2,1)-Pascal triangle A029653.

Original entry on oeis.org

5, 7, 9, 11, 25, 13, 55, 15, 49, 91, 17, 19, 81, 21, 285, 23, 121, 385, 825, 25, 2079, 27, 169, 3289, 4719, 29, 819, 5005, 9867, 31, 225, 1015, 3185, 7371, 13013, 17875, 33, 35, 289, 37, 1785, 39, 361, 2109, 8721, 41, 35853, 43, 441, 46683, 128877, 45, 3311
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A029666 Numbers to the right of the central elements of the (2,1)-Pascal triangle A029653.

Original entry on oeis.org

1, 1, 4, 1, 5, 1, 14, 6, 1, 20, 7, 1, 50, 27, 8, 1, 77, 35, 9, 1, 182, 112, 44, 10, 1, 294, 156, 54, 11, 1, 672, 450, 210, 65, 12, 1, 1122, 660, 275, 77, 13, 1, 2508, 1782, 935, 352, 90, 14, 1, 4290, 2717, 1287, 442, 104, 15, 1, 9438, 7007, 4004, 1729, 546, 119, 16, 1
Offset: 0

Views

Author

Keywords

Examples

			A029653 triangle begins:
1
2,  1,
2,  3,  1,
2,  5,  4,   1,
2,  7,  9,   5,   1,
2,  9, 16,  14,   6,   1,
2, 11, 25,  30,  20,   7,   1,
...
so this triangle starts:
.
1,
1,
4, 1,
5, 1,
14, 6, 1,
20, 7, 1,
...
		

Extensions

More terms from James Sellers

A029667 Numbers to the left of the central elements of the (2,1)-Pascal triangle A029653 that are different from 2.

Original entry on oeis.org

5, 7, 9, 16, 11, 25, 13, 36, 55, 15, 49, 91, 17, 64, 140, 196, 19, 81, 204, 336, 21, 100, 285, 540, 714, 23, 121, 385, 825, 1254, 25, 144, 506, 1210, 2079, 2640, 27, 169, 650, 1716, 3289, 4719, 29, 196, 819, 2366, 5005, 8008, 9867, 31, 225, 1015, 3185, 7371
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A029668 Odd numbers to the right of the central elements of the (2,1)-Pascal triangle A029653 that are different from 1.

Original entry on oeis.org

5, 7, 27, 77, 35, 9, 11, 65, 275, 77, 13, 935, 2717, 1287, 15, 7007, 1729, 119, 16445, 11011, 5733, 2275, 665, 135, 17, 19, 189, 1311, 209, 21, 7125, 32319, 8645, 23, 127281, 10395, 275, 447051, 168245, 51359, 12397, 2277, 299, 25, 1427679
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A029669 Odd numbers in the (2,1)-Pascal triangle A029653.

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 7, 9, 5, 1, 9, 1, 11, 25, 7, 1, 13, 55, 27, 1, 15, 49, 91, 105, 77, 35, 9, 1, 17, 1, 19, 81, 11, 1, 21, 285, 65, 1, 23, 121, 385, 825, 275, 77, 13, 1, 25, 2079, 935, 1, 27, 169, 3289, 4719, 2717, 1287, 15, 1, 29, 819, 5005, 9867, 7007, 1729, 119, 1, 31
Offset: 0

Views

Author

Keywords

Extensions

More terms from James Sellers

A238160 A skewed version of triangular array A029653.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 5, 2, 0, 0, 0, 4, 7, 2, 0, 0, 0, 1, 9, 9, 2, 0, 0, 0, 0, 5, 16, 11, 2, 0, 0, 0, 0, 1, 14, 25, 13, 2, 0, 0, 0, 0, 0, 6, 30, 36, 15, 2, 0, 0, 0, 0, 0, 1, 20, 55, 49, 17, 2, 0, 0, 0, 0, 0, 0, 7, 50, 91, 64, 19, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Feb 18 2014

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Row sums are Fib(n+2).
Column sums are A003945(k).
Diagonal sums are (-1)^(n+1)*A109266(n+1).
T(3*n,2*n) = A029651(n).

Examples

			Triangle begins:
1;
0, 2;
0, 1, 2;
0, 0, 3, 2;
0, 0, 1, 5, 2;
0, 0, 0, 4, 7, 2;
0, 0, 0, 1, 9, 9, 2;
0, 0, 0, 0, 5, 16, 11, 2;
0, 0, 0, 0, 1, 14, 25, 13, 2;
0, 0, 0, 0, 0, 6, 30, 36, 15, 2;
0, 0, 0, 0, 0, 1, 20, 55, 49, 17, 2;
0, 0, 0, 0, 0, 0, 7, 50, 91, 64, 19, 2;
...
		

Crossrefs

Formula

G.f.: (1+x*y)/(1-x*y-x^2*y).
T(n,k) = T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000045(n+2), A026150(n+1), A108306(n), A164545(n), A188168(n+1) for x = 0, 1, 2, 3, 4, 5 respectively.

A003945 Expansion of g.f. (1+x)/(1-2*x).

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
For n > 0, row sums of A029635. - Paul Barry, Jan 30 2005
Binomial transform is {1, 4, 13, 40, 121, 364, ...}, see A003462. - Philippe Deléham, Jul 23 2005
Convolved with the Jacobsthal sequence A001045 = A001786: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
Equals (n+1)-th row sums of triangle A161175. - Gary W. Adamson, Jun 05 2009
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
INVERTi transform of A003688. - Gary W. Adamson, Aug 05 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
A216022(a(n)) != 2 and A216059(a(n)) != 3. - Reinhard Zumkeller, Sep 01 2012
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Sums of pairs of rows of Pascal's triangle A007318, T(2n,k)+T(2n+1,k); Sum_{n>=1} A000290(n)/a(n) = 4. - John Molokach, Sep 26 2013

Crossrefs

Essentially same as A007283 (3*2^n) and A042950.
Generating functions of the form (1+x)/(1-k*x) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952.
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
Cf. A003688.

Programs

  • Maple
    k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
  • Mathematica
    Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
    Table[2^n+Floor[2^(n-1)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)
    CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* Harvey P. Dale, May 04 2017 *)
  • PARI
    a(n)=if(n,3<Charles R Greathouse IV, Jan 12 2012

Formula

a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
Binomial transform of A000034. a(n) = (3*2^n - 0^n)/2. - Paul Barry, Apr 29 2003
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 1. - Philippe Deléham, Jul 10 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
a(n) = 2^n + floor(2^(n-1)). - Martin Grymel, Oct 17 2012
E.g.f.: (3*exp(2*x) - 1)/2. - Stefano Spezia, Jan 31 2023

Extensions

Edited by N. J. A. Sloane, Dec 04 2009

A003946 Expansion of (1+x)/(1-3*x).

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
Offset: 0

Views

Author

Keywords

Comments

Coordination sequence for infinite tree with valency 4.
The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6. - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001
a(n) is the number of nonreversing random walks of the length of n edges on a two-dimensional square lattice, all beginning at a fixed point P. - Pawel P. Mazur (Pawel.Mazur(AT)pwr.wroc.pl), Apr 06 2005
Binomial transform of {1, 3, 5, 11, 21, 43, ...}, see A001045. Binomial transform is {1, 5, 21, 85, 341, 1365, ...}, see A002450. - Philippe Deléham, Jul 22 2005
For n >= 2, a(n) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3} we have f(x_1) <> y_1 and f(x_2) <> y_2. - Milan Janjic, Apr 19 2007
Equals row sums of triangle A143865. - Gary W. Adamson, Sep 04 2008
Equals INVERT transform of the odd integers = 1/(1 - x - 3x^2 - 5x^3 - ...). - Gary W. Adamson, Jul 27 2009
a(n) is the number of generalized compositions of n+1 when there are 2 *i-1 different types of the part i, (i=1,2,...). - Milan Janjic, Aug 26 2010
Number of length-n strings of 4 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
The sequence is the INVERTi transform of A015448: (1, 5, 21, 89, 377, ...). - Gary W. Adamson, Aug 06 2016
Let D(m) = {d(m,i)}, i = 1..q, denote the set of the q divisors of a number m, and consider s1(m) and s2(m) the sums of the divisors that are congruent to 1 and 2 (mod 3) respectively. For n > 0, the sequence a(n) lists the numbers m such that s1(m) = 5 and s2(m) = 2. - Michel Lagneau, Feb 09 2017
a(n) is the number of quaternary sequences of length n such that no two consecutive terms have distance 2. - David Nacin, May 31 2017
Also the number of maximal cliques in the n-Sierpinski gasket graph. - Eric W. Weisstein, Dec 01 2017
Number of 3-permutations of n elements avoiding the patterns 231, 321. See Bonichon and Sun. - Michel Marcus, Aug 19 2022

Examples

			G.f. = 1 + 4*x + 12*x^2 + 36*x^3 + 108*x^4 + 324*x^5 + 972*x^6 + 2916*x^7 + ...
		

Crossrefs

Cf. A029653, A143865, column 4 in A265583, A015448.

Programs

Formula

a(n) = floor(4*3^(n-1)). - Michael Somos, Jun 18 2002
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 2. - Philippe Deléham, Jul 10 2005
The Hankel transform of this sequence is [1,-4,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
a(n + 1) = (((1 + sqrt(-11))/2)^n + ((1 - sqrt(-11))/2)^n)^2 - (((1 + sqrt(-11))/2)^n - ((1 - sqrt(-11))/2)^n)^2. - Raphie Frank, Dec 07 2015
From Mario C. Enriquez, Apr 01 2017: (Start)
(L(a(n+k)) - 1)/a(n) reduces to the form C/a(n-1), where n > 1, k >= 0, L(a(n)) is the a(n)-th Lucas number and C = (L(a(n+k)) - 1)/3.
(L(a(n+k)) - 1)/3 mod (L(a(n)) - 1)/3 = (L(a(n)) - 1)/3 - 1, where n >= 1, k >= 0 and L(a(n)) is the a(n)-th Lucas number. (End)
E.g.f.: (4*exp(3*x) - 1)/3. - Stefano Spezia, Jan 31 2025

Extensions

Additional comments from Michael Somos, Jun 18 2002
Edited by N. J. A. Sloane, Dec 04 2009
Previous Showing 11-20 of 56 results. Next