A029662
Numbers to the left of the central numbers of the (2,1)-Pascal triangle A029653.
Original entry on oeis.org
2, 2, 2, 5, 2, 7, 2, 9, 16, 2, 11, 25, 2, 13, 36, 55, 2, 15, 49, 91, 2, 17, 64, 140, 196, 2, 19, 81, 204, 336, 2, 21, 100, 285, 540, 714, 2, 23, 121, 385, 825, 1254, 2, 25, 144, 506, 1210, 2079, 2640, 2, 27, 169, 650, 1716, 3289, 4719, 2, 29, 196, 819, 2366, 5005
Offset: 0
A029663
Numbers to the right of the central elements of the (2,1)-Pascal triangle A029653 that are different from 1.
Original entry on oeis.org
4, 5, 14, 6, 20, 7, 50, 27, 8, 77, 35, 9, 182, 112, 44, 10, 294, 156, 54, 11, 672, 450, 210, 65, 12, 1122, 660, 275, 77, 13, 2508, 1782, 935, 352, 90, 14, 4290, 2717, 1287, 442, 104, 15, 9438, 7007, 4004, 1729, 546, 119, 16, 16445, 11011, 5733, 2275, 665, 135
Offset: 0
A029664
Odd numbers to the left of the central elements of the (2,1)-Pascal triangle A029653.
Original entry on oeis.org
5, 7, 9, 11, 25, 13, 55, 15, 49, 91, 17, 19, 81, 21, 285, 23, 121, 385, 825, 25, 2079, 27, 169, 3289, 4719, 29, 819, 5005, 9867, 31, 225, 1015, 3185, 7371, 13013, 17875, 33, 35, 289, 37, 1785, 39, 361, 2109, 8721, 41, 35853, 43, 441, 46683, 128877, 45, 3311
Offset: 0
A029666
Numbers to the right of the central elements of the (2,1)-Pascal triangle A029653.
Original entry on oeis.org
1, 1, 4, 1, 5, 1, 14, 6, 1, 20, 7, 1, 50, 27, 8, 1, 77, 35, 9, 1, 182, 112, 44, 10, 1, 294, 156, 54, 11, 1, 672, 450, 210, 65, 12, 1, 1122, 660, 275, 77, 13, 1, 2508, 1782, 935, 352, 90, 14, 1, 4290, 2717, 1287, 442, 104, 15, 1, 9438, 7007, 4004, 1729, 546, 119, 16, 1
Offset: 0
A029653 triangle begins:
1
2, 1,
2, 3, 1,
2, 5, 4, 1,
2, 7, 9, 5, 1,
2, 9, 16, 14, 6, 1,
2, 11, 25, 30, 20, 7, 1,
...
so this triangle starts:
.
1,
1,
4, 1,
5, 1,
14, 6, 1,
20, 7, 1,
...
A029667
Numbers to the left of the central elements of the (2,1)-Pascal triangle A029653 that are different from 2.
Original entry on oeis.org
5, 7, 9, 16, 11, 25, 13, 36, 55, 15, 49, 91, 17, 64, 140, 196, 19, 81, 204, 336, 21, 100, 285, 540, 714, 23, 121, 385, 825, 1254, 25, 144, 506, 1210, 2079, 2640, 27, 169, 650, 1716, 3289, 4719, 29, 196, 819, 2366, 5005, 8008, 9867, 31, 225, 1015, 3185, 7371
Offset: 0
A029668
Odd numbers to the right of the central elements of the (2,1)-Pascal triangle A029653 that are different from 1.
Original entry on oeis.org
5, 7, 27, 77, 35, 9, 11, 65, 275, 77, 13, 935, 2717, 1287, 15, 7007, 1729, 119, 16445, 11011, 5733, 2275, 665, 135, 17, 19, 189, 1311, 209, 21, 7125, 32319, 8645, 23, 127281, 10395, 275, 447051, 168245, 51359, 12397, 2277, 299, 25, 1427679
Offset: 0
A029669
Odd numbers in the (2,1)-Pascal triangle A029653.
Original entry on oeis.org
1, 1, 3, 1, 5, 1, 7, 9, 5, 1, 9, 1, 11, 25, 7, 1, 13, 55, 27, 1, 15, 49, 91, 105, 77, 35, 9, 1, 17, 1, 19, 81, 11, 1, 21, 285, 65, 1, 23, 121, 385, 825, 275, 77, 13, 1, 25, 2079, 935, 1, 27, 169, 3289, 4719, 2717, 1287, 15, 1, 29, 819, 5005, 9867, 7007, 1729, 119, 1, 31
Offset: 0
A238160
A skewed version of triangular array A029653.
Original entry on oeis.org
1, 0, 2, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 5, 2, 0, 0, 0, 4, 7, 2, 0, 0, 0, 1, 9, 9, 2, 0, 0, 0, 0, 5, 16, 11, 2, 0, 0, 0, 0, 1, 14, 25, 13, 2, 0, 0, 0, 0, 0, 6, 30, 36, 15, 2, 0, 0, 0, 0, 0, 1, 20, 55, 49, 17, 2, 0, 0, 0, 0, 0, 0, 7, 50, 91, 64, 19, 2, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1;
0, 2;
0, 1, 2;
0, 0, 3, 2;
0, 0, 1, 5, 2;
0, 0, 0, 4, 7, 2;
0, 0, 0, 1, 9, 9, 2;
0, 0, 0, 0, 5, 16, 11, 2;
0, 0, 0, 0, 1, 14, 25, 13, 2;
0, 0, 0, 0, 0, 6, 30, 36, 15, 2;
0, 0, 0, 0, 0, 1, 20, 55, 49, 17, 2;
0, 0, 0, 0, 0, 0, 7, 50, 91, 64, 19, 2;
...
A003945
Expansion of g.f. (1+x)/(1-2*x).
Original entry on oeis.org
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Yasemin Alp and E. Gokcen Kocer, Exponential Almost-Riordan Arrays, Results Math. (2024) Vol. 79, 173.
- F. Faase, Counting Hamiltonian cycles in product graphs
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 151
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 304
- Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations, Discrete Math. 312 (2012), no. 21, 3179--3194. MR2957938. - From _N. J. A. Sloane_, Sep 25 2012
- C. Richard and U. Grimm, On the entropy and letter frequencies of ternary squarefree words, arXiv:math/0302302 [math.CO], 2003.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (2).
- Index entries for sequences related to trees
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30:
A170732,
A170733,
A170734,
A170735,
A170736,
A170737,
A170738,
A170739,
A170740,
A170741,
A170742,
A170743,
A170744,
A170745,
A170746,
A170747,
A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50:
A170749,
A170750,
A170751,
A170752,
A170753,
A170754,
A170755,
A170756,
A170757,
A170758,
A170759,
A170760,
A170761,
A170762,
A170763,
A170764,
A170765,
A170766,
A170767,
A170768,
A170769.
-
k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
-
Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
Table[2^n+Floor[2^(n-1)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)
CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* Harvey P. Dale, May 04 2017 *)
-
a(n)=if(n,3<Charles R Greathouse IV, Jan 12 2012
A003946
Expansion of (1+x)/(1-3*x).
Original entry on oeis.org
1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395628, 172186884, 516560652, 1549681956, 4649045868, 13947137604, 41841412812, 125524238436, 376572715308, 1129718145924
Offset: 0
G.f. = 1 + 4*x + 12*x^2 + 36*x^3 + 108*x^4 + 324*x^5 + 972*x^6 + 2916*x^7 + ...
- T. D. Noe, Table of n, a(n) for n = 0..200
- Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
- Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- D. J. Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory, arXiv:hep-th/9604128, 1996.
- John Elias, Illustration: Sierpinski Hexagrams
- I. M. Gessel and Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 305
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Amya Luo, Pattern Avoidance in Nonnesting Permutations, Undergraduate Thesis, Dartmouth College (2024). See p. 3.
- A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Maximal Clique.
- Eric Weisstein's World of Mathematics, Sierpiński Gasket Graph.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (3).
- Index entries for sequences related to trees
-
[1] cat [4*3^(n-1): n in [1..25]]; // Vincenzo Librandi, Dec 11 2012
-
if n = 0 then 1 else 4*3^(n-1); fi;
-
Join[{1}, 4 3^Range[0, 30]] (* Vladimir Joseph Stephan Orlovsky, Jun 14 2009 *)
Join[{1}, NestList[3# &, 4, 30]] (* Harvey P. Dale, Nov 30 2011 *)
CoefficientList[Series[(1 + x)/(1 - 3 x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2012 *)
Join[{1}, LinearRecurrence[{3}, {4}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
-
A003946[n]:=if n<1 then 1 else 4*3^(n-1)$
makelist(A003946[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
{a(n) = if( n<1, n==0, 4 * 3^(n-1))}; /* Michael Somos, Jun 18 2002 */
-
Vec((1+x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Dec 07 2015
Comments