cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 313 results. Next

A367905 Number of ways to choose a sequence of different binary indices, one of each binary index of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 4, 1, 1, 0, 2, 1, 1, 0, 2, 0, 0, 0, 4, 1, 2, 0, 3, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			352 has binary indices of binary indices {{2,3},{1,2,3},{1,4}}, and there are six possible choices (2,1,4), (2,3,1), (2,3,4), (3,1,4), (3,2,1), (3,2,4), so a(352) = 6.
		

Crossrefs

A version for multisets is A367771, see A355529, A355740, A355744, A355745.
Positions of positive terms are A367906.
Positions of zeros are A367907.
Positions of ones are A367908.
Positions of terms > 1 are A367909.
Positions of first appearances are A367910, sorted A367911.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
    Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]],{n,0,100}]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(0):
            c = 0
            for j in list(product(*[bin_i(k) for k in bin_i(n)])):
                if len(set(j)) == len(j):
                    c += 1
            yield c
    A367905_list = list(islice(a_gen(), 90)) # John Tyler Rascoe, May 22 2024

A052330 Let S_k denote the first 2^k terms of this sequence and let b_k be the smallest positive integer that is not in S_k; then the numbers b_k*S_k are the next 2^k terms.

Original entry on oeis.org

1, 2, 3, 6, 4, 8, 12, 24, 5, 10, 15, 30, 20, 40, 60, 120, 7, 14, 21, 42, 28, 56, 84, 168, 35, 70, 105, 210, 140, 280, 420, 840, 9, 18, 27, 54, 36, 72, 108, 216, 45, 90, 135, 270, 180, 360, 540, 1080, 63, 126, 189, 378, 252, 504, 756, 1512, 315, 630, 945, 1890
Offset: 0

Views

Author

Christian G. Bower, Dec 15 1999

Keywords

Comments

Inverse of sequence A064358 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
This sequence is not exactly a permutation because it has offset 0 but doesn't contain 0. A052331 is its exact inverse, which has offset 1 and contains 0. See also A064358.
Are there any other values of n besides 4 and 36 with a(n) = n? - Thomas Ordowski, Apr 01 2005
4 = 100 = 4^1 * 3^0 * 2^0, 36 = 100100 = 9^1 * 7^0 * 5^0 * 4^1 * 3^0 * 2^0. - Thomas Ordowski, May 26 2005
Ordering of positive integers by increasing "Fermi-Dirac representation", which is a representation of the "Fermi-Dirac factorization", term implying that each prime power with a power of two as exponent may appear at most once in the "Fermi-Dirac factorization" of n. (Cf. comment in A050376; see also the OEIS Wiki page.) - Daniel Forgues, Feb 11 2011
The subsequence consisting of the squarefree terms is A019565. - Peter Munn, Mar 28 2018
Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict integer partition (y_1,...,y_k) is f(y_1)*...*f(y_k). A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. Then a(n) is the number whose binary indices are the parts of the strict integer partition with FDH-number n. - Gus Wiseman, Aug 19 2019
The set of indices of odd-valued terms has asymptotic density 0. In this sense (using the order they appear in this permutation) 100% of numbers are even. - Peter Munn, Aug 26 2019

Examples

			Terms following 5 are 10, 15, 30, 20, 40, 60, 120; this is followed by 7 as 6 has already occurred. - _Philippe Deléham_, Jun 03 2015
From _Antti Karttunen_, Apr 13 2018, after also _Philippe Deléham_'s Jun 03 2015 example: (Start)
This sequence can be regarded also as an irregular triangle with rows of lengths 1, 1, 2, 4, 8, 16, ..., that is, it can be represented as a binary tree, where each left hand child contains A300841(k), and each right hand child contains 2*A300841(k), when their parent contains k:
                                     1
                                     |
                  ...................2...................
                 3                                       6
       4......../ \........8                  12......../ \........24
      / \                 / \                 / \                 / \
     /   \               /   \               /   \               /   \
    /     \             /     \             /     \             /     \
   5       10         15       30         20       40         60      120
  7 14   21  42     28  56   84  168    35  70  105  210   140 280  420 840
  etc.
Compare also to trees like A005940 and A283477, and sequences A207901 and A302783.
(End)
		

Crossrefs

Subsequences: A019565 (squarefree terms), A050376 (the left edge from 2 onward), A336882 (odd terms).

Programs

  • Mathematica
    a = {1}; Do[a = Join[a, a*Min[Complement[Range[Max[a] + 1], a]]], {n, 1, 6}]; a (* Ivan Neretin, May 09 2015 *)
  • PARI
    up_to_e = 13; \\ Good for computing up to n = (2^13)-1
    v050376 = vector(up_to_e);
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A050376(n) = v050376[n];
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); }; \\ Antti Karttunen, Apr 12 2018

Formula

a(0)=1; a(n+2^k)=a(n)*b(k) for n < 2^k, k = 0, 1, ... where b is A050376. - Thomas Ordowski, Mar 04 2005
The binary representation of n, n = Sum_{i=0..1+floor(log_2(n))} n_i * 2^i, n_i in {0,1}, is taken as the "Fermi-Dirac representation" (A182979) of a(n), a(n) = Product_{i=0..1+floor(log_2(n))} (b_i)^(n_i) where b_i is A050376(i), i.e., the i-th "Fermi-Dirac prime" (prime power with exponent being a power of 2). - Daniel Forgues, Feb 12 2011
From Antti Karttunen, Apr 12 & 17 2018: (Start)
a(0) = 1; a(2n) = A300841(a(n)), a(2n+1) = 2*A300841(a(n)).
a(n) = A207901(A006068(n)) = A302783(A003188(n)) = A302781(A302845(n)).
(End)

Extensions

Entry revised Mar 17 2005 by N. J. A. Sloane, based on comments from several people, especially David Wasserman and Thomas Ordowski

A124768 Number of strictly increasing runs for compositions in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 2, 3, 1, 3, 2, 4, 1, 2, 2, 3, 2, 3, 3, 5, 1, 2, 2, 3, 2, 3, 2, 4, 1, 2, 3, 4, 2, 3, 3, 5, 1, 2, 2, 3, 1, 3, 2, 4, 2, 3, 3, 4, 3, 4, 4, 6, 1, 2, 2, 3, 2, 3, 2, 4, 1, 3, 3, 4, 2, 3, 3, 5, 1, 2, 2, 3, 2, 4, 3, 5, 2, 3, 3, 4, 3, 4, 4, 6, 1, 2, 2, 3, 2, 3, 2, 4, 1
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. a(n) is the number of maximal strictly increasing runs in this composition. Alternatively, a(n) is one plus the number of weak descents in the same composition. For example, the strictly increasing runs of the 1234567th composition are ((3),(2),(1,2),(2),(1,2,5),(1),(1),(1)), so a(1234567) = 8. The 7 weak descents together with the strict ascents are: 3 >= 2 >= 1 < 2 >= 2 >= 1 < 2 < 5 >= 1 >= 1 >= 1. - Gus Wiseman, Apr 08 2020

Examples

			Composition number 11 is 2,1,1; the strictly increasing runs are 2; 1; 1; so a(11) = 3.
The table starts:
  0
  1
  1 2
  1 2 1 3
  1 2 2 3 1 2 2 4
  1 2 2 3 1 3 2 4 1 2 2 3 2 3 3 5
  1 2 2 3 2 3 2 4 1 2 3 4 2 3 3 5 1 2 2 3 1 3 2 4 2 3 3 4 3 4 4 6
		

Crossrefs

Cf. A066099, A124763, A011782 (row lengths).
Compositions of n with k weak descents are A333213.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Partial sums from the right are A048793.
- Sum is A070939.
- Weakly decreasing compositions are A114994.
- Adjacent equal pairs are counted by A124762.
- Weakly decreasing runs are counted by A124765.
- Weakly increasing runs are counted by A124766.
- Equal runs are counted by A124767.
- Strictly increasing runs are counted by A124768 (this sequence).
- Strictly decreasing runs are counted by A124769.
- Weakly increasing compositions are A225620.
- Reverse is A228351 (triangle).
- Strict compositions are A233564.
- Initial intervals are A246534.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Permutations are A333218.
- Heinz number is A333219.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.
- Anti-runs are A333489.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Split[stc[n],Less]],{n,0,100}] (* Gus Wiseman, Apr 08 2020 *)

Formula

a(0) = 0, a(n) = A124763(n) + 1 for n > 0.

A367907 Numbers n such that it is not possible to choose a different binary index of each binary index of n.

Original entry on oeis.org

7, 15, 23, 25, 27, 29, 30, 31, 39, 42, 43, 45, 46, 47, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 71, 75, 77, 78, 79, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 99, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) contradicting a strict version of the axiom of choice.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{1},{2},{1,2},{1,3}} with BII-number 23 has choices (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3), but none of these has all different elements, so 23 is in the sequence.
The terms together with the corresponding set-systems begin:
   7: {{1},{2},{1,2}}
  15: {{1},{2},{1,2},{3}}
  23: {{1},{2},{1,2},{1,3}}
  25: {{1},{3},{1,3}}
  27: {{1},{2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  39: {{1},{2},{1,2},{2,3}}
  42: {{2},{3},{2,3}}
  43: {{1},{2},{3},{2,3}}
  45: {{1},{1,2},{3},{2,3}}
  46: {{2},{1,2},{3},{2,3}}
  47: {{1},{2},{1,2},{3},{2,3}}
  51: {{1},{2},{1,3},{2,3}}
		

Crossrefs

These set-systems are counted by A367903, non-isomorphic A368094.
Positions of zeros in A367905, firsts A367910, sorted A367911.
The complement is A367906.
If there is one unique choice we get A367908, counted by A367904.
If there are multiple choices we get A367909, counted by A367772.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]=={}&]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(1):
            p = list(product(*[bin_i(k) for k in bin_i(n)]))
            x = len(p)
            for j in range(x):
                if len(set(p[j])) == len(p[j]): break
                if j+1 == x: yield(n)
    A367907_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024

Formula

A333627 The a(n)-th composition in standard order is the sequence of run-lengths of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 3, 4, 1, 3, 2, 6, 3, 7, 5, 8, 1, 3, 3, 6, 3, 5, 7, 12, 3, 7, 6, 14, 5, 11, 9, 16, 1, 3, 3, 6, 2, 7, 7, 12, 3, 7, 4, 10, 7, 15, 13, 24, 3, 7, 7, 14, 7, 13, 15, 28, 5, 11, 10, 22, 9, 19, 17, 32, 1, 3, 3, 6, 3, 7, 7, 12, 3, 5, 6, 14, 7, 15, 13
Offset: 0

Views

Author

Gus Wiseman, Mar 30 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The standard compositions and their run-lengths:
       0 ~ () -> () ~ 0
      1 ~ (1) -> (1) ~ 1
      2 ~ (2) -> (1) ~ 1
     3 ~ (11) -> (2) ~ 2
      4 ~ (3) -> (1) ~ 1
     5 ~ (21) -> (11) ~ 3
     6 ~ (12) -> (11) ~ 3
    7 ~ (111) -> (3) ~ 4
      8 ~ (4) -> (1) ~ 1
     9 ~ (31) -> (11) ~ 3
    10 ~ (22) -> (2) ~ 2
   11 ~ (211) -> (12) ~ 6
    12 ~ (13) -> (11) ~ 3
   13 ~ (121) -> (111) ~ 7
   14 ~ (112) -> (21) ~ 5
  15 ~ (1111) -> (4) ~ 8
     16 ~ (5) -> (1) ~ 1
    17 ~ (41) -> (11) ~ 3
    18 ~ (32) -> (11) ~ 3
   19 ~ (311) -> (12) ~ 6
		

Crossrefs

Positions of first appearances are A333630.
All of the following pertain to compositions in standard order (A066099):
- The length is A000120.
- The partial sums from the right are A048793.
- The sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Equal runs are counted by A124767.
- Strict compositions are ranked by A233564.
- The partial sums from the left are A272020.
- Constant compositions are ranked by A272919.
- Normal compositions are ranked by A333217.
- Heinz number is A333219.
- Anti-runs are counted by A333381.
- Adjacent unequal pairs are counted by A333382.
- Runs-resistance is A333628.
- First appearances of run-resistances are A333629.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[2^(Accumulate[Reverse[Length/@Split[stc[n]]]])]/2,{n,0,30}]

Formula

A000120(n) = A070939(a(n)).
A000120(a(n)) = A124767(n).

A048896 a(n) = 2^(A000120(n+1) - 1), n >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4
Offset: 0

Views

Author

Keywords

Comments

a(n) = 2^A048881 = 2^{maximal power of 2 dividing the n-th Catalan number (A000108)}. [Comment corrected by N. J. A. Sloane, Apr 30 2018]
Row sums of triangle A128937. - Philippe Deléham, May 02 2007
a(n) = sum of (n+1)-th row terms of triangle A167364. - Gary W. Adamson, Nov 01 2009
a(n), n >= 1: Numerators of Maclaurin series for 1 - ((sin x)/x)^2, A117972(n), n >= 2: Denominators of Maclaurin series for 1 - ((sin x)/x)^2, the correlation function in Montgomery's pair correlation conjecture. - Daniel Forgues, Oct 16 2011
For n > 0: a(n) = A007954(A007931(n)). - Reinhard Zumkeller, Oct 26 2012
a(n) = A261363(2*(n+1), n+1). - Reinhard Zumkeller, Aug 16 2015
From Gus Wiseman, Oct 30 2022: (Start)
Also the number of coarsenings of the (n+1)-th composition in standard order. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. See link for sequences related to standard compositions. For example, the a(10) = 4 coarsenings of (2,1,1) are: (2,1,1), (2,2), (3,1), (4).
Also the number of times n+1 appears in A357134. For example, 11 appears at positions 11, 20, 33, and 1024, so a(10) = 4.
(End)

Examples

			From _Omar E. Pol_, Jul 21 2009: (Start)
If written as a triangle:
  1;
  1,2;
  1,2,2,4;
  1,2,2,4,2,4,4,8;
  1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16;
  1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32;
  ...,
the first half-rows converge to Gould's sequence A001316.
(End)
		

Crossrefs

This is Guy Steele's sequence GS(3, 5) (see A135416).
Equals first right hand column of triangle A160468.
Equals A160469(n+1)/A002425(n+1).
Standard compositions are listed by A066099.
The opposite version (counting refinements) is A080100.
The version for Heinz numbers of partitions is A317141.

Programs

  • Haskell
    a048896 n = a048896_list !! n
    a048896_list = f [1] where f (x:xs) = x : f (xs ++ [x,2*x])
    -- Reinhard Zumkeller, Mar 07 2011
    
  • Haskell
    import Data.List (transpose)
    a048896 = a000079 . a000120
    a048896_list = 1 : concat (transpose
       [zipWith (-) (map (* 2) a048896_list) a048896_list,
        map (* 2) a048896_list])
    -- Reinhard Zumkeller, Jun 16 2013
    
  • Magma
    [Numerator(2^n / Factorial(n+1)): n in [0..100]]; // Vincenzo Librandi, Apr 12 2014
  • Maple
    a := n -> 2^(add(i,i=convert(n+1,base,2))-1): seq(a(n), n=0..97); # Peter Luschny, May 01 2009
  • Mathematica
    NestList[Flatten[#1 /. a_Integer -> {a, 2 a}] &, {1}, 4] // Flatten (* Robert G. Wilson v, Aug 01 2012 *)
    Table[Numerator[2^n / (n + 1)!], {n, 0, 200}] (* Vincenzo Librandi, Apr 12 2014 *)
    Denominator[Table[BernoulliB[2*n] / (Zeta[2*n]/Pi^(2*n)), {n, 1, 100}]] (* Terry D. Grant, May 29 2017 *)
    Table[Denominator[((2 n)!/2^(2 n + 1)) (-1)^n], {n, 1, 100}]/4 (* Terry D. Grant, May 29 2017 *)
    2^IntegerExponent[CatalanNumber[Range[0,100]],2] (* Harvey P. Dale, Apr 30 2018 *)
  • PARI
    a(n)=if(n<1,1,if(n%2,a(n/2-1/2),2*a(n-1)))
    
  • PARI
    a(n) = 1 << (hammingweight(n+1)-1); \\ Kevin Ryde, Feb 19 2022
    

Formula

a(n) = 2^A048881(n).
a(n) = 2^k if 2^k divides A000108(n) but 2^(k+1) does not divide A000108(n).
It appears that a(n) = Sum_{k=0..n} binomial(2*(n+1), k) mod 2. - Christopher Lenard (c.lenard(AT)bendigo.latrobe.edu.au), Aug 20 2001
a(0) = 1; a(2*n) = 2*a(2*n-1); a(2*n+1) = a(n).
a(n) = (1/2) * A001316(n+1). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004
It appears that a(n) = Sum_{k=0..2n} floor(binomial(2n+2, k+1)/2)(-1)^k = 2^n - Sum_{k=0..n+1} floor(binomial(n+1, k)/2). - Paul Barry, Dec 24 2004
a(n) = Sum_{k=0..n} (T(n,k) mod 2) where T = A039598, A053121, A052179, A124575, A126075, A126093. - Philippe Deléham, May 02 2007
a(n) = numerator(b(n)), where sin(x)^2/x = Sum_{n>0} b(n)*(-1)^n x^(2*n-1). - Vladimir Kruchinin, Feb 06 2013
a((2*n+1)*2^p-1) = A001316(n), p >= 0 and n >= 0. - Johannes W. Meijer, Feb 12 2013
a(n) = numerator(2^n / (n+1)!). - Vincenzo Librandi, Apr 12 2014
a(2n) = (2n+1)!/(n!n!)/A001803(n). - Richard Turk, Aug 23 2017
a(2n-1) = (2n-1)!/(n!(n-1)!)/A001790(n). - Richard Turk, Aug 23 2017

Extensions

New definition from N. J. A. Sloane, Mar 01 2008

A367906 Numbers k such that it is possible to choose a different binary index of each binary index of k.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 48, 49, 50, 52, 56, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 80, 81, 82, 84, 88, 96, 97, 98, 100, 104, 112, 128, 129, 130, 131, 132
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice.
A binary index of k (row k of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number k to be obtained by taking the binary indices of each binary index of k. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{2,3},{1,2,3},{1,4}} with BII-number 352 has choices such as (2,1,4) that satisfy the axiom, so 352 is in the sequence.
The terms together with the corresponding set-systems begin:
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
		

Crossrefs

These set-systems are counted by A367902, non-isomorphic A368095.
Positions of positive terms in A367905, firsts A367910, sorted A367911.
The complement is A367907.
If there is one unique choice we get A367908, counted by A367904.
If there are multiple choices we get A367909, counted by A367772.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]!={}&]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(1):
            for j in list(product(*[bin_i(k) for k in bin_i(n)])):
                if len(set(j)) == len(j):
                    yield(n); break
    A367906_list = list(islice(a_gen(),100)) # John Tyler Rascoe, Dec 23 2023

A087207 A binary representation of the primes that divide a number, shown in decimal.

Original entry on oeis.org

0, 1, 2, 1, 4, 3, 8, 1, 2, 5, 16, 3, 32, 9, 6, 1, 64, 3, 128, 5, 10, 17, 256, 3, 4, 33, 2, 9, 512, 7, 1024, 1, 18, 65, 12, 3, 2048, 129, 34, 5, 4096, 11, 8192, 17, 6, 257, 16384, 3, 8, 5, 66, 33, 32768, 3, 20, 9, 130, 513, 65536, 7, 131072, 1025, 10, 1, 36, 19, 262144, 65, 258
Offset: 1

Views

Author

Mitch Cervinka (puritan(AT)planetkc.com), Oct 26 2003

Keywords

Comments

The binary representation of a(n) shows which prime numbers divide n, but not the multiplicities. a(2)=1, a(3)=10, a(4)=1, a(5)=100, a(6)=11, a(10)=101, a(30)=111, etc.
For n > 1, a(n) gives the (one-based) index of the column where n is located in array A285321. A008479 gives the other index. - Antti Karttunen, Apr 17 2017
From Antti Karttunen, Jun 18 & 20 2017: (Start)
A268335 gives all n such that a(n) = A248663(n); the squarefree numbers (A005117) are all the n such that a(n) = A285330(n) = A048675(n).
For all n > 1 for which the value of A285331(n) is well-defined, we have A285331(a(n)) <= floor(A285331(n)/2), because then n is included in the binary tree A285332 and a(n) is one of its ancestors (in that tree), and thus must be at least one step nearer to its root than n itself.
Conjecture: Starting at any n and iterating the map n -> a(n), we will always reach 0 (see A288569). This conjecture is equivalent to the conjecture that at any n that is neither a prime nor a power of two, we will eventually hit a prime number (which then becomes a power of two in the next iteration). If this conjecture is false then sequence A285332 cannot be a permutation of natural numbers. On the other hand, if the conjecture is true, then A285332 must be a permutation of natural numbers, because all primes and powers of 2 occur in definite positions in that tree. This conjecture also implies the conjectures made in A019565 and A285320 that essentially claim that there are neither finite nor infinite cycles in A019565.
If there are any 2-cycles in this sequence, then both terms of the cycle should be present in A286611 and the larger one should be present in A286612.
(End)
Binary rank of the distinct prime indices of n, where the binary rank of an integer partition y is given by Sum_i 2^(y_i-1). For all prime indices (with multiplicity) we have A048675. - Gus Wiseman, May 25 2024

Examples

			a(38) = 129 because 38 = 2*19 = prime(1)*prime(8) and 129 = 2^0 + 2^7 (in binary 10000001).
a(140) = 13, binary 1101 because 140 is divisible by the first, third and fourth primes and 2^(1-1) + 2^(3-1) + 2^(4-1) = 13.
		

Crossrefs

For partial sums see A288566.
Sequences with related definitions: A007947, A008472, A027748, A048675, A248663, A276379 (same sequence shown in base 2), A288569, A289271, A297404.
Cf. A286608 (numbers n for which a(n) < n), A286609 (n for which a(n) > n), and also A286611, A286612.
A003986, A003961, A059896 are used to express relationship between terms of this sequence.
Related to A267116 via A225546.
Positions of particular values are: A000079\{1} (1), A000244\{1} (2), A033845 (3), A000351\{1} (4), A033846 (5), A033849 (6), A143207 (7), A000420\{1} (8), A033847 (9), A033850 (10), A033851 (12), A147576 (14), A147571 (15), A001020\{1} (16), A033848 (17).
A048675 gives binary rank of prime indices.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.
Binary indices (listed A048793):
- length A000120, complement A023416
- min A001511, opposite A000012
- sum A029931, product A096111
- max A029837 or A070939, opposite A070940
- complement A368494, sum A359400
- opposite complement A371571, sum A359359
- opposite A371572, sum A230877

Programs

  • Haskell
    a087207 = sum . map ((2 ^) . (subtract 1) . a049084) . a027748_row
    -- Reinhard Zumkeller, Jul 16 2013
    
  • Mathematica
    a[n_] := Total[ 2^(PrimePi /@ FactorInteger[n][[All, 1]] - 1)]; a[1] = 0; Table[a[n], {n, 1, 69}] (* Jean-François Alcover, Dec 12 2011 *)
  • PARI
    a(n) = {if (n==1, 0, my(f=factor(n), v = []); forprime(p=2, vecmax(f[,1]), v = concat(v, vecsearch(f[,1], p)!=0);); fromdigits(Vecrev(v), 2));} \\ Michel Marcus, Jun 05 2017
    
  • PARI
    A087207(n)=vecsum(apply(p->1<M. F. Hasler, Jun 23 2017
    
  • Python
    from sympy import factorint, primepi
    def a(n):
        return sum(2**primepi(i - 1) for i in factorint(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017
    
  • Scheme
    (definec (A087207 n) (if (= 1 n) 0 (+ (A000079 (+ -1 (A055396 n))) (A087207 (A028234 n))))) ;; This uses memoization-macro definec
    (define (A087207 n) (A048675 (A007947 n))) ;; Needs code from A007947 and A048675. - Antti Karttunen, Jun 19 2017

Formula

Additive with a(p^e) = 2^(i-1) where p is the i-th prime. - Vladeta Jovovic, Oct 29 2003
a(n) gives the m such that A019565(m) = A007947(n). - Naohiro Nomoto, Oct 30 2003
A000120(a(n)) = A001221(n); a(n) = Sum(2^(A049084(p)-1): p prime-factor of n). - Reinhard Zumkeller, Nov 30 2003
G.f.: Sum_{k>=1} 2^(k-1)*x^prime(k)/(1-x^prime(k)). - Franklin T. Adams-Watters, Sep 01 2009
From Antti Karttunen, Apr 17 2017, Jun 19 2017 & Dec 06 2018: (Start)
a(n) = A048675(A007947(n)).
a(1) = 0; for n > 1, a(n) = 2^(A055396(n)-1) + a(A028234(n)).
A000035(a(n)) = 1 - A000035(n). [a(n) and n are of opposite parity.]
A248663(n) <= a(n) <= A048675(n). [XOR-, OR- and +-variants.]
a(A293214(n)) = A218403(n).
a(A293442(n)) = A267116(n).
A069010(a(n)) = A287170(n).
A007088(a(n)) = A276379(n).
A038374(a(n)) = A300820(n) for n >= 1.
(End)
From Peter Munn, Jan 08 2020: (Start)
a(A059896(n,k)) = a(n) OR a(k) = A003986(a(n), a(k)).
a(A003961(n)) = 2*a(n).
a(n^2) = a(n).
a(n) = A267116(A225546(n)).
a(A225546(n)) = A267116(n).
(End)

Extensions

More terms from Don Reble, Ray Chandler and Naohiro Nomoto, Oct 28 2003
Name clarified by Antti Karttunen, Jun 18 2017

A059590 Numbers obtained by reinterpreting base-2 representation of n in the factorial base: a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1).

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 24, 25, 26, 27, 30, 31, 32, 33, 120, 121, 122, 123, 126, 127, 128, 129, 144, 145, 146, 147, 150, 151, 152, 153, 720, 721, 722, 723, 726, 727, 728, 729, 744, 745, 746, 747, 750, 751, 752, 753, 840, 841, 842, 843, 846, 847, 848, 849, 864, 865
Offset: 0

Views

Author

Henry Bottomley, Jan 24 2001

Keywords

Comments

Numbers that are sums of distinct factorials (0! and 1! not treated as distinct).
Complement of A115945; A115944(a(n)) > 0; A115647 is a subsequence. - Reinhard Zumkeller, Feb 02 2006
A115944(a(n)) = 1. - Reinhard Zumkeller, Dec 04 2011
From Tilman Piesk, Jun 04 2012: (Start)
The inversion vector (compare A007623) of finite permutation a(n) (compare A055089, A195663) has only zeros and ones. Interpreted as a binary number it is 2*n (or n when the inversion vector is defined without the leading 0).
The inversion set of finite permutation a(n) interpreted as a binary number (compare A211362) is A211364(n).
(End)

Examples

			128 is in the sequence since 5! + 3! + 2! = 128.
a(22) = 128. a(22) = a(6) + (1 + floor(log(16) / log(2)))! = 8 + 5! = 128. Also, 22 = 10110_2. Therefore, a(22) = 1 * 5! + 0 * 4! + 1 * 3! + 1 + 2! + 0 * 0! = 128. - _David A. Corneth_, Aug 21 2016
		

Crossrefs

Indices of zeros in A257684.
Cf. A275736 (left inverse).
Cf. A025494, A060112 (subsequences).
Subsequence of A060132, A256450 and A275804.
Other sequences that are built by replacing 2^k in the binary representation with other numbers: A029931 (naturals), A089625 (primes), A022290 (Fibonacci), A197433 (Catalans), A276091 (n*n!), A275959 ((2n)!/2). Cf. also A276082 & A276083.

Programs

  • Haskell
    import Data.List (elemIndices)
    a059590 n = a059590_list !! n
    a059590_list = elemIndices 1 $ map a115944 [0..]
    -- Reinhard Zumkeller, Dec 04 2011
    
  • Maple
    [seq(bin2facbase(j),j=0..64)]; bin2facbase := proc(n) local i; add((floor(n/(2^i)) mod 2)*((i+1)!),i=0..floor_log_2(n)); end;
    floor_log_2 := proc(n) local nn,i; nn := n; for i from -1 to n do if(0 = nn) then RETURN(i); fi; nn := floor(nn/2); od; end;
    # next Maple program:
    a:= n-> (l-> add(l[j]*j!, j=1..nops(l)))(Bits[Split](n)):
    seq(a(n), n=0..57);  # Alois P. Heinz, Aug 12 2025
  • Mathematica
    a[n_] :=  Reverse[id = IntegerDigits[n, 2]].Range[Length[id]]!; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 19 2012, after Philippe Deléham *)
  • PARI
    a(n) = if(n>0, a(n-msb(n)) + (1+logint(n,2))!, 0)
    msb(n) = 2^#binary(n)>>1
    {my(b = binary(n)); sum(i=1,#b,b[i]*(#b+1-i)!)} \\ David A. Corneth, Aug 21 2016
    
  • Python
    def facbase(k, f):
        return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
    def auptoN(N): # terms up to N factorial-base digits; 13 generates b-file
        f = [factorial(i) for i in range(1, N+1)]
        return list(facbase(k, f) for k in range(2**N))
    print(auptoN(5)) # Michael S. Branicky, Oct 15 2022

Formula

G.f. 1/(1-x) * Sum_{k>=0} (k+1)!*x^2^k/(1+x^2^k). - Ralf Stephan, Jun 24 2003
a(n) = Sum_{k>=0} A030308(n,k)*A000142(k+1). - Philippe Deléham, Oct 15 2011
From Antti Karttunen, Aug 19 2016: (Start)
a(0) = 0, a(2n) = A153880(a(n)), a(2n+1) = 1+A153880(a(n)).
a(n) = A225901(A276091(n)).
a(n) = A276075(A019565(n)).
a(A275727(n)) = A276008(n).
A275736(a(n)) = n.
A276076(a(n)) = A019565(n).
A007623(a(n)) = A007088(n).
(End)
a(n) = a(n - mbs(n)) + (1 + floor(log(n) / log(2)))!. - David A. Corneth, Aug 21 2016

Extensions

Name changed (to emphasize the functional nature of the sequence) with the old definition moved to the comments by Antti Karttunen, Aug 21 2016

A072639 a(0) = 0, a(n) = Sum_{i=0..n-1} 2^((2^i)-1).

Original entry on oeis.org

0, 1, 3, 11, 139, 32907, 2147516555, 9223372039002292363, 170141183460469231740910675754886398091, 57896044618658097711785492504343953926805133516280751251469702679711451218059
Offset: 0

Views

Author

Antti Karttunen, Jun 02 2002

Keywords

Comments

Maximum position in A072644 where the value n occurs.
Also partial sums of A058891, i.e. the first differences are there. - R. J. Mathar, May 15 2007
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Then a(n) is the minimum BII-number of a set-system with n distinct vertices. - Gus Wiseman, Jul 24 2019

Crossrefs

Binary width of each term: A000079. Cf. A072638, A072640, A072654.
Cf. A058891.

Programs

  • Maple
    A072639 := proc(n) local i; add(2^((2^i)-1),i=0..(n-1)); end;
  • Mathematica
    a[n_] := Sum[2^(2^i - 1), {i, 0, n - 1}]; Table[a[n], {n, 0, 9}] (* Jean-François Alcover, Mar 06 2016 *)
  • PARI
    a(n) = if (n, sum(i=0, n-1, 2^((2^i)-1)), 0); \\ Michel Marcus, Mar 06 2016
Previous Showing 21-30 of 313 results. Next