cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 82 results. Next

A267697 Numbers with 7 odd divisors.

Original entry on oeis.org

729, 1458, 2916, 5832, 11664, 15625, 23328, 31250, 46656, 62500, 93312, 117649, 125000, 186624, 235298, 250000, 373248, 470596, 500000, 746496, 941192, 1000000, 1492992, 1771561, 1882384, 2000000, 2985984, 3543122, 3764768, 4000000, 4826809, 5971968, 7086244, 7529536, 8000000, 9653618
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2016

Keywords

Comments

Positive integers that have exactly seven odd divisors.
Numbers k such that the symmetric representation of sigma(k) has 7 subparts. - Omar E. Pol, Dec 28 2016
Numbers that can be formed in exactly 6 ways by summing sequences of 2 or more consecutive positive integers. - Julie Jones, Aug 13 2018
Numbers of the form p^6 * 2^k where p is an odd prime. - David A. Corneth, Aug 14 2018

Crossrefs

Column 7 of A266531.
Numbers with k odd divisors (k = 1..10): A000079, A038550, A072502, apparently A131651, A267696, A230577, this sequence, A267891, A267892, A267893.

Programs

  • PARI
    isok(n) = sumdiv(n, d, (d%2)) == 7; \\ Michel Marcus, Apr 03 2016
    
  • PARI
    upto(n) = {my(res = List()); forprime(p = 3, sqrtnint(n, 6), listput(res, p^6)); q = #res; for(i = 1, q, odd = res[i]; for(j = 1, logint(n \ odd, 2), listput(res, odd <<= 1))); listsort(res); res} \\ David A. Corneth, Aug 14 2018
    
  • Python
    from sympy import integer_log, primerange, integer_nthroot
    def A267697(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(integer_log(x//p**6,2)[0]+1 for p in primerange(3,integer_nthroot(x,6)[0]+1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A001227(a(n)) = 7.
Sum_{n>=1} 1/a(n) = 2 * P(6) - 1/32 = 0.00289017370127..., where P(6) is the value of the prime zeta function at 6 (A085966). - Amiram Eldar, Sep 16 2024

Extensions

More terms from Michel Marcus, Apr 03 2016

A319075 Square array T(n,k) read by antidiagonal upwards in which row n lists the n-th powers of primes, hence column k lists the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 8, 9, 5, 1, 16, 27, 25, 7, 1, 32, 81, 125, 49, 11, 1, 64, 243, 625, 343, 121, 13, 1, 128, 729, 3125, 2401, 1331, 169, 17, 1, 256, 2187, 15625, 16807, 14641, 2197, 289, 19, 1, 512, 6561, 78125, 117649, 161051, 28561, 4913, 361, 23, 1, 1024, 19683, 390625, 823543, 1771561, 371293
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

If n = p - 1 where p is prime, then row n lists the numbers with p divisors.
The partial sums of column k give the column k of A319076.

Examples

			The corner of the square array is as follows:
         A000079 A000244 A000351  A000420    A001020    A001022     A001026
A000012        1,      1,      1,       1,         1,         1,          1, ...
A000040        2,      3,      5,       7,        11,        13,         17, ...
A001248        4,      9,     25,      49,       121,       169,        289, ...
A030078        8,     27,    125,     343,      1331,      2197,       4913, ...
A030514       16,     81,    625,    2401,     14641,     28561,      83521, ...
A050997       32,    243,   3125,   16807,    161051,    371293,    1419857, ...
A030516       64,    729,  15625,  117649,   1771561,   4826809,   24137569, ...
A092759      128,   2187,  78125,  823543,  19487171,  62748517,  410338673, ...
A179645      256,   6561, 390625, 5764801, 214358881, 815730721, 6975757441, ...
...
		

Crossrefs

Other rows n: A030635 (n=16), A030637 (n=18), A137486 (n=22), A137492 (n=28), A139571 (n=30), A139572 (n=36), A139573 (n=40), A139574 (n=42), A139575 (n=46), A173533 (n=52), A183062 (n=58), A183085 (n=60), A261700 (n=100).
Main diagonal gives A093360.
Second diagonal gives A062457.
Third diagonal gives A197987.
Removing the 1's we have A182944/ A182945.

Programs

  • PARI
    T(n, k) = prime(k)^n;

Formula

T(n,k) = A000040(k)^n, n >= 0, k >= 1.

A113851 Numbers whose prime factors are raised to the sixth power.

Original entry on oeis.org

64, 729, 15625, 46656, 117649, 1000000, 1771561, 4826809, 7529536, 11390625, 24137569, 47045881, 85766121, 113379904, 148035889, 308915776, 594823321, 729000000, 887503681, 1291467969, 1544804416, 1838265625, 2565726409, 3010936384, 3518743761, 4750104241
Offset: 1

Views

Author

Cino Hilliard, Jan 25 2006

Keywords

Crossrefs

Subset of A001014. Superset of A030516.
Nonunit terms of A329332 column 6 in ascending order.

Programs

  • Maple
    for n from 2 to 100 do if(numtheory[issqrfree](n))then printf("%d, ", n^6): fi: od: # Nathaniel Johnston, Jun 21 2011
  • Mathematica
    Select[ Range@37^6, Union[Last /@ FactorInteger@# ] == {6} &] (* Robert G. Wilson v *)
    Select[Range[2, 37], SquareFreeQ]^6 (* Amiram Eldar, Oct 13 2020 *)
  • Python
    from math import isqrt
    from sympy import mobius
    def A113851(n):
        def f(x): return int(n+1-sum(mobius(k)*(x//k**2) for k in range(2, isqrt(x)+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**6 # Chai Wah Wu, Feb 25 2025

Formula

a(n) = A005117(n+1)^6. - Nathaniel Johnston, Jun 21 2011
Sum_{n>=1} 1/a(n) = zeta(6)/zeta(12) - 1 = A269404 - 1. - Amiram Eldar, Oct 13 2020

Extensions

More terms from Robert G. Wilson v, Jan 26 2006

A133533 Sum of sixth powers of three consecutive primes.

Original entry on oeis.org

16418, 134003, 1904835, 6716019, 30735939, 76010259, 219219339, 789905091, 1630362891, 4048053411, 8203334331, 13637193699, 21850682619, 39264939507, 75124110099, 115865269131, 184159290171, 270079040451, 369892892379
Offset: 1

Views

Author

Artur Jasinski, Sep 14 2007

Keywords

Examples

			a(1)=16418 because 2^6+3^6+5^6=16418.
		

Crossrefs

Programs

  • Maple
    L:= [seq(ithprime(i)^6,i=1..100)]:
    L[1..-3]+L[2..-2]+L[3..-1]; # Robert Israel, Jun 28 2018
  • Mathematica
    a = 6; Table[Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a, {n, 1, 100}]
    Total/@(Partition[Prime[Range[25]],3,1]^6)  (* Harvey P. Dale, Mar 29 2011 *)

Formula

a(n) = A133537(n) + A030516(n+2). - Michel Marcus, Nov 09 2013

A137488 Numbers with 25 divisors.

Original entry on oeis.org

1296, 10000, 38416, 50625, 194481, 234256, 456976, 1185921, 1336336, 1500625, 2085136, 2313441, 4477456, 6765201, 9150625, 10556001, 11316496, 14776336, 16777216, 17850625, 22667121, 29986576, 35153041, 45212176, 52200625
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^24 (24th powers of A000040, subset of A010812) or p^4*q^4 (A189991), where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Haskell
    a137488 n = a137488_list !! (n-1)
    a137488_list = m (map (^ 24) a000040_list) (map (^ 4) a006881_list) where
       m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys'
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Nov 29 2011
    
  • Mathematica
    lst = {}; Do[If[DivisorSigma[0, n] == 25, Print[n]; AppendTo[lst, n]], {n, 55000000}]; lst (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    Select[Range[5221*10^4],DivisorSigma[0,#]==25&] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    is(n)=numdiv(n)==25 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A137488(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,4)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)))-primepi(integer_nthroot(x,24)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A000005(a(n)) = 25.
Sum_{n>=1} 1/a(n) = (P(4)^2 - P(8))/2 + P(24) = 0.000933328..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A357581 Square array read by antidiagonals of numbers whose symmetric representation of sigma consists only of parts that have width 1; column k indicates the number of parts and row n indicates the n-th number in increasing order in each of the columns.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 8, 7, 25, 21, 16, 10, 49, 27, 81, 32, 11, 50, 33, 625, 147, 64, 13, 98, 39, 1250, 171, 729, 128, 14, 121, 51, 2401, 207, 15625, 903, 256, 17, 169, 55, 4802, 243, 31250, 987, 3025, 512, 19, 242, 57, 14641, 261, 117649, 1029, 3249, 6875
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 04 2022

Keywords

Comments

This sequence is a permutation of A174905. Numbers in the even numbered columns of the table form A241008 and those in the odd numbered columns form A241010. The first row of the table is A318843.
This sequence is a subsequence of A240062 and each column in this sequence is a subsequence in the respective column of A240062.

Examples

			The upper left hand 11 X 11 section of the table for a(n) <= 2*10^7:
     1   2    3   4      5    6         7     8      9     10        11 ...
  ----------------------------------------------------------------------
     1   3    9  21     81  147       729   903   3025   6875     59049
     2   5   25  27    625  171     15625   987   3249   7203   9765625
     4   7   49  33   1250  207     31250  1029   4761  13203  19531250
     8  10   50  39   2401  243    117649  1113   6561  13527       ...
    16  11   98  51   4802  261    235298  1239   7569  14013       ...
    32  13  121  55  14641  275   1771561  1265   8649  14499       ...
    64  14  169  57  28561  279   3543122  1281  12321  14661       ...
   128  17  242  65  29282  333   4826809  1375  14161  15471       ...
   256  19  289  69  57122  363   7086244  1407  15129  15633       ...
   512  22  338  85  58564  369   9653618  1491  16641  15957       ...
  1024  23  361  87  83521  387  19307236  1533  17689  16119       ...
  ...
Each column k > 1 contains odd and even numbers since, e.g., 5^(k-1) and 2 * 5^(k-1) belong to it.
Column 1: A000079, subsequence of A174973 = A238443, and of column 1 in A240062.
Column 2: A246955, subsequence of A239929; 78 is the smallest number not in A246955.
Column 3: A247687, subsequence of A279102; 15 is the smallest number not in A247687.
  Odd numbers in column 3: A001248(k), k > 1.
Column 4: A264102, subsequence of A280107; 75 is the smallest number not in A264102.
Column 5: subsequence of A320066; 63 = A320066(1) is not in column 5.
  Numbers in column 5 have the form 2^k * p^4 with p > 2 prime and 0 <= k < floor(log_2(p)).
  Odd numbers in column 5: A030514(k), k > 1.
Column 6: subsequence of A320511; 189 is the smallest number not in column 6.
  Smallest even number in column 6 is 5050.
Column 7: Numbers have the form 2^k * p^6 with p > 2 prime and 0 <= k < floor(log_2(p)).
  Odd numbers in column 7: A030516(k), k > 1.
Numbers in the column numbered with the n-th prime p_n have the form: 2^k * p^(p_n - 1) with p > 2 prime and 0 <= k < floor(log_2(p_n)).
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
    width1Table[n_, {r_, c_}] := Module[{k, list=Table[{}, c], wL, wLen, pCount, colLen}, For[k=1, k<=n, k++, wL=a341969[k]; wLen=Length[wL]; pCount=(wLen+1)/2; If[pCount<=c&&Length[list[[pCount]]]=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
    a357581T[n_, r_] := TableForm[width1Table[n, {r, r}]]
    a357581[120000, 10] (* sequence data - first 10 antidiagonals *)
    a357581T[120000, 10] (* upper left hand 10x10 array *)
    a357581T[20000000, 11] (* 11x11 array - very long computation time *)

A069493 6-full numbers: if p divides n then so does p^6.

Original entry on oeis.org

1, 64, 128, 256, 512, 729, 1024, 2048, 2187, 4096, 6561, 8192, 15625, 16384, 19683, 32768, 46656, 59049, 65536, 78125, 93312, 117649, 131072, 139968, 177147, 186624, 262144, 279936, 373248, 390625, 419904, 524288, 531441, 559872, 746496, 823543, 839808
Offset: 1

Views

Author

Benoit Cloitre, Apr 15 2002

Keywords

Comments

a(m) mod prime(n) > 0 for m < A258603(n); a(A258600(n)) = A030516(n) = prime(n)^6. - Reinhard Zumkeller, Jun 06 2015

Examples

			2^7*3^6 = 93312 is a member (although not of A076470).
		

Crossrefs

Cf. A036967, A036966, A001694. Different from A076470.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, fromList, union)
    a069493 n = a069493_list !! (n-1)
    a069493_list = 1 : f (singleton z) [1, z] zs where
       f s q6s p6s'@(p6:p6s)
         | m < p6 = m : f (union (fromList $ map (* m) ps) s') q6s p6s'
         | otherwise = f (union (fromList $ map (* p6) q6s) s) (p6:q6s) p6s
         where ps = a027748_row m
               (m, s') = deleteFindMin s
       (z:zs) = a030516_list
    -- Reinhard Zumkeller, Jun 03 2015
    
  • Mathematica
    Join[{1},Select[Range[900000],Min[FactorInteger[#][[All,2]]]>5&]] (* Harvey P. Dale, Mar 03 2018 *)
  • PARI
    for(n=1,560000,if(n*sumdiv(n,d,isprime(d)/d^6)==floor(n*sumdiv(n,d,isprime(d)/d^6)),print1(n,",")))
    
  • Python
    from math import gcd
    from sympy import factorint, integer_nthroot
    def A069493(n):
        def f(x):
            c = n+x
            for y1 in range(1,integer_nthroot(x,11)[0]+1):
                if all(d<=1 for d in factorint(y1).values()):
                    for y2 in range(1,integer_nthroot(z2:=x//y1**11,10)[0]+1):
                        if gcd(y2,y1)==1 and all(d<=1 for d in factorint(y2).values()):
                            for y3 in range(1,integer_nthroot(z3:=z2//y2**10,9)[0]+1):
                                if gcd(y3,y1)==1 and gcd(y3,y2)==1 and all(d<=1 for d in factorint(y3).values()):
                                    for y4 in range(1,integer_nthroot(z4:=z3//y3**9,8)[0]+1):
                                        if gcd(y4,y1)==1 and gcd(y4,y2)==1 and gcd(y4,y3)==1 and all(d<=1 for d in factorint(y4).values()):
                                            for y5 in range(1,integer_nthroot(z5:=z4//y4**8,7)[0]+1):
                                                if gcd(y5,y1)==1 and gcd(y5,y2)==1 and gcd(y5,y3)==1 and gcd(y5,y4)==1 and all(d<=1 for d in factorint(y5).values()):
                                                    c -= integer_nthroot(z5//y5**7,6)[0]
            return c
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f,n,n) # Chai Wah Wu, Sep 10 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^5*(p-1))) = 1.0334657852594050612296726462481884631303137561267151463866539131591664... - Amiram Eldar, Jul 09 2020

A137485 Numbers with 22 divisors.

Original entry on oeis.org

3072, 5120, 7168, 11264, 13312, 17408, 19456, 23552, 29696, 31744, 37888, 41984, 44032, 48128, 54272, 60416, 62464, 68608, 72704, 74752, 80896, 84992, 91136, 99328, 103424, 105472, 109568, 111616, 115712, 118098, 130048, 134144, 140288
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^21 or p*q^10, where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Maple
    A137485=proc(q) local n;
    for n from 1 to q do if tau(n)=22 then print(n); fi; od; end:
    A137485(10^10);
  • Mathematica
    Select[Range[200000],DivisorSigma[0,#]==22&] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
  • PARI
    is(n)=numdiv(n)==22 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A137485(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**10) for p in primerange(integer_nthroot(x,10)[0]+1))+primepi(integer_nthroot(x,11)[0])-primepi(integer_nthroot(x,21)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n))=22.

A137491 Numbers with 28 divisors.

Original entry on oeis.org

960, 1344, 1728, 2112, 2240, 2496, 3264, 3520, 3648, 4160, 4416, 4928, 5440, 5568, 5824, 5832, 5952, 6080, 7104, 7290, 7360, 7616, 7872, 8000, 8256, 8512, 9024, 9152, 9280, 9920, 10176, 10206, 10304, 11328, 11712, 11840, 11968, 12864, 12992, 13120
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^27 (subset of A122968), p*q^13, p*q*r^6 (A179672) or p^3*q^6 (A179694), where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n)) = 28.

A166546 Natural numbers n such that d(n) + 1 is prime.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 86, 87, 89, 90
Offset: 1

Views

Author

Giovanni Teofilatto, Oct 16 2009

Keywords

Comments

Natural numbers n such that d(d(n)+1)= 2. - Giovanni Teofilatto, Oct 26 2009
The complement is the union of A001248, A030514, A030516, A030626, A030627, A030629, A030631, A030632, A030633 etc. - R. J. Mathar, Oct 26 2009

Crossrefs

Cf. A000005.
Cf. A073915. - R. J. Mathar, Oct 26 2009

Programs

  • Magma
    [n: n in [1..100] | IsPrime(NumberOfDivisors(n)+1)]; // Vincenzo Librandi, Jan 20 2019
  • Mathematica
    Select[Range@90, PrimeQ[DivisorSigma[0, #] + 1] &] (* Vincenzo Librandi, Jan 20 2019 *)
  • PARI
    isok(n) = isprime(numdiv(n)+1); \\ Michel Marcus, Jan 20 2019
    

Formula

{1} U A000040 U A030513 U A030515 U A030628 U A030630 U A030634 U A030636 U A137485 U A137491 U A137493 U ... . - R. J. Mathar, Oct 26 2009
Previous Showing 31-40 of 82 results. Next