cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A033275 Number of diagonal dissections of an n-gon into 3 regions.

Original entry on oeis.org

0, 5, 21, 56, 120, 225, 385, 616, 936, 1365, 1925, 2640, 3536, 4641, 5985, 7600, 9520, 11781, 14421, 17480, 21000, 25025, 29601, 34776, 40600, 47125, 54405, 62496, 71456, 81345, 92225, 104160, 117216, 131461, 146965, 163800, 182040, 201761, 223041, 245960
Offset: 4

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n-3,2,2) (n>=5). - Emeric Deutsch, May 13 2004
Number of short bushes with n+1 edges and 3 branch nodes (i.e., nodes with outdegree at least 2). A short bush is an ordered tree with no nodes of outdegree 1. Example: a(5)=5 because the only short bushes with 6 edges and 3 branch nodes are the five full binary trees with 6 edges. Column 3 of A108263. - Emeric Deutsch, May 29 2005

Crossrefs

2nd skew subdiagonal of A033282.

Programs

  • Mathematica
    a[4]=0; a[n_]:=Binomial[n+1,2]*Binomial[n-3,2]/3; Table[a[n],{n,4,43}] (* Indranil Ghosh, Feb 20 2017 *)
  • PARI
    concat(0, Vec(z^5*(5-4*z+z^2)/(1-z)^5 + O(z^60))) \\ Michel Marcus, Jun 18 2015
    
  • PARI
    a(n) = binomial(n+1, 2)*binomial(n-3, 2)/3 \\ Charles R Greathouse IV, Feb 20 2017
    
  • Sage
    def A033275(n): return (binomial(n+1, 2)*binomial(n-3, 2))//3
    print([A033275(n) for n in range(4,50)]) # Peter Luschny, Apr 03 2020

Formula

a(n) = binomial(n+1, 2)*binomial(n-3, 2)/3.
G.f.: z^5*(5-4*z+z^2)/(1-z)^5. - Emeric Deutsch, May 29 2005
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=5} 1/a(n) = 43/150.
Sum_{n>=5} (-1)^(n+1)/a(n) = 16*log(2)/5 - 154/75. (End)
E.g.f.: x*(exp(x)*(12 - 6*x + x^3) - 6*(2 + x))/12. - Stefano Spezia, Feb 21 2024

A253283 Triangle read by rows: coefficients of the partial fraction decomposition of [d^n/dx^n] (x/(1-x))^n/n!.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 3, 12, 10, 0, 4, 30, 60, 35, 0, 5, 60, 210, 280, 126, 0, 6, 105, 560, 1260, 1260, 462, 0, 7, 168, 1260, 4200, 6930, 5544, 1716, 0, 8, 252, 2520, 11550, 27720, 36036, 24024, 6435, 0, 9, 360, 4620, 27720, 90090, 168168, 180180, 102960, 24310
Offset: 0

Views

Author

Peter Luschny, Mar 20 2015

Keywords

Comments

The rows give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)^2*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1) / (n!*(n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 31 2022
This is related to the cluster fans of type B (see Fomin and Zelevinsky reference) - F. Chapoton, Nov 17 2022.

Examples

			[1]
[0, 1]
[0, 2,   3]
[0, 3,  12,   10]
[0, 4,  30,   60,   35]
[0, 5,  60,  210,  280,  126]
[0, 6, 105,  560, 1260, 1260,  462]
[0, 7, 168, 1260, 4200, 6930, 5544, 1716]
.
R_0(x) = 1/(x-1)^0.
R_1(x) = 0/(x-1)^1 + 1/(x-1)^2.
R_2(x) = 0/(x-1)^2 + 2/(x-1)^3 + 3/(x-1)^4.
R_3(x) = 0/(x-1)^3 + 3/(x-1)^4 + 12/(x-1)^5 + 10/(x-1)^6.
Then k!*[x^k] R_n(x) is A001286(k+2) and A001754(k+3) for n = 2, 3 respectively.
.
Seen as an array A(n, k) = binomial(n + k, k)*binomial(n + 2*k - 1, n + k):
[0] 1, 1,   3,   10,    35,    126,     462, ...
[1] 0, 2,  12,   60,   280,   1260,    5544, ...
[2] 0, 3,  30,  210,  1260,   6930,   36036, ...
[3] 0, 4,  60,  560,  4200,  27720,  168168, ...
[4] 0, 5, 105, 1260, 11550,  90090,  630630, ...
[5] 0, 6, 168, 2520, 27720, 252252, 2018016, ...
[6] 0, 7, 252, 4620, 60060, 630630, 5717712, ...
		

Crossrefs

T(n, n) = C(2*n-1, n) = A001700(n-1).
T(n, n-1) = A005430(n-1) for n >= 1.
T(n, n-2) = A051133(n-2) for n >= 2.
T(n, 2) = A027480(n-1) for n >= 2.
T(2*n, n) = A208881(n) for n >= 0.
A002002 (row sums).

Programs

  • Maple
    T_row := proc(n) local egf, k, F, t;
    if n=0 then RETURN(1) fi;
    egf := (x/(1-x))^n/n!; t := diff(egf,[x$n]);
    F := convert(t,parfrac,x);
    # print(seq(k!*coeff(series(F,x,20),x,k),k=0..7));
    # gives A000142, A001286, A001754, A001755, A001777, ...
    seq(coeff(F,(x-1)^(-k)),k=n..2*n) end:
    seq(print(T_row(n)),n=0..7);
    # 2nd version by R. J. Mathar, Dec 18 2016:
    A253283 := proc(n,k)
        binomial(n,k)*binomial(n+k-1,k-1) ;
    end proc:
  • Mathematica
    Table[Binomial[n, k] Binomial[n + k - 1, k - 1], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    T(n,k) = binomial(n,k)*binomial(n+k-1,k-1);
    tabl(nn) = for(n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Apr 29 2018

Formula

The exponential generating functions for the rows of the square array L(n,k) = ((n+k)!/n!)*C(n+k-1,n-1) (associated to the unsigned Lah numbers) are given by R_n(x) = Sum_{k=0..n} T(n,k)/(x-1)^(n+k).
T(n,k) = C(n,k)*C(n+k-1,k-1).
Sum_{k=0..n} T(n,k) = (-1)^n*hypergeom([-n,n],[1],2) = (-1)^n*A182626(n).
Row generating function: Sum_{k>=1} T(n,k)*z^k = z*n* 2F1(1-n,n+1 ; 2; -z). - R. J. Mathar, Dec 18 2016
From Peter Bala, Feb 22 2017: (Start)
G.f.: (1/2)*( 1 + (1 - t)/sqrt(1 - 2*(2*x + 1)*t + t^2) ) = 1 + x*t + (2*x + 3*x^2)*t^2 + (3*x + 12*x^2 + 10*x^3)*t^3 + ....
n-th row polynomial R(n,x) = (1/2)*(LegendreP(n, 2*x + 1) - LegendreP(n-1, 2*x + 1)) for n >= 1.
The row polynomials are the black diamond product of the polynomials x^n and x^(n+1) (see Dukes and White 2016 for the definition of this product).
exp(Sum_{n >= 1} R(n,x)*t^n/n) = 1 + x*t + x*(1 + 2*x)*t^2 + x*(1 + 5*x + 5*x^2)*t^3 + ... is a g.f. for A033282, but with a different offset.
The polynomials P(n,x) := (-1)^n/n!*x^(2*n)*(d/dx)^n(1 + 1/x)^n begin 1, 3 + 2*x , 10 + 12*x + 3*x^2, ... and are the row polynomials for the row reverse of this triangle. (End)
Let Q(n, x) = Sum_{j=0..n} (-1)^(n - j)*A269944(n, j)*x^(2*j - 1) and P(x, y) = (LegendreP(x, 2*y + 1) - LegendreP(x-1, 2*y + 1)) / 2 (see Peter Bala above). Then n!*(n - 1)!*[y^n] P(x, y) = Q(n, x) for n >= 1. - Peter Luschny, Oct 31 2022
From Peter Bala, Apr 18 2024: (Start)
G.f.: Sum_{n >= 0} binomial(2*n-1, n)*(x*t)^n/(1 - t)^(2*n) = 1 + x*t + (2*x + 3*x^2)*t^2 + (3*x + 12*x^2 + 10*x^3)*t^3 + ....
n-th row polynomial R(n, x) = [t^n] ( (1 - t)/(1 - (1 + x)*t) )^n.
It follows that for integer x, the sequence {R(n, x) : n >= 0} satisfies the Gauss congruences: R(n*p^r, x) == R(n*p^(r-1), x) (mod p^r) for all primes p and positive integers n and r.
R(n, -2) = (-1)^n * A002003(n) for n >= 1.
R(n, 3) = A299507(n). (End)

A295222 Array read by antidiagonals: T(n,k) is the number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell up to rotation (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 10, 1, 1, 6, 22, 30, 1, 1, 8, 40, 116, 99, 1, 1, 9, 64, 285, 612, 335, 1, 1, 11, 92, 578, 2126, 3399, 1144, 1, 1, 12, 126, 1015, 5481, 16380, 19228, 3978, 1, 1, 14, 166, 1641, 11781, 54132, 129456, 111041, 14000
Offset: 1

Views

Author

Andrew Howroyd, Nov 17 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called F.

Examples

			Array begins:
  ===========================================================
  n\k|     3      4       5        6         7          8
  ---|-------------------------------------------------------
   1 |     1      1       1        1         1          1 ...
   2 |     1      1       1        1         1          1 ...
   3 |     3      5       6        8         9         11 ...
   4 |    10     22      40       64        92        126 ...
   5 |    30    116     285      578      1015       1641 ...
   6 |    99    612    2126     5481     11781      22386 ...
   7 |   335   3399   16380    54132    141778     317860 ...
   8 |  1144  19228  129456   548340   1753074    4638348 ...
   9 |  3978 111041 1043460  5672645  22137570   69159400 ...
  10 | 14000 650325 8544965 59653210 284291205 1048927880 ...
  ...
		

Crossrefs

Columns k=3..5 are A003441, A005033, A005037.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#]&]/k;
    Table[T[n - k + 3, k], {n, 1, 10}, {k, n + 2, 3, -1}] // Flatten (* Jean-François Alcover, Nov 21 2017, after Andrew Howroyd *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r)={r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n,k)=sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d, k, k/d))/k;
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def T(n, k): return sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI

Formula

T(n,k) = Sum_{d|gcd(n-1,k)} phi(d)*u((n-1)/d, k, k/d)/k where u(n,k,r) = r*binomial((k - 1)*n + r, n)/((k - 1)*n + r).
T(n,k) ~ n*A070914(n,k-2)/(n*(k-2)+2) for fixed k.

A295259 Array read by antidiagonals: T(n,k) = number of nonequivalent dissections of a polygon into n k-gons by nonintersecting diagonals rooted at a cell up to rotation and reflection (k >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 4, 13, 16, 1, 1, 6, 22, 64, 52, 1, 1, 6, 35, 147, 315, 170, 1, 1, 8, 49, 302, 1074, 1727, 579, 1, 1, 8, 67, 518, 2763, 8216, 9658, 1996, 1, 1, 10, 87, 843, 5916, 27168, 64798, 55657, 7021
Offset: 1

Views

Author

Andrew Howroyd, Nov 18 2017

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.
In the Harary, Palmer and Read reference these are the sequences called f.

Examples

			Array begins:
  =========================================================
  n\k|    3      4       5        6         7         8
  ---|-----------------------------------------------------
   1 |    1      1       1        1         1         1 ...
   2 |    1      1       1        1         1         1 ...
   3 |    2      4       4        6         6         8 ...
   4 |    6     13      22       35        49        67 ...
   5 |   16     64     147      302       518       843 ...
   6 |   52    315    1074     2763      5916     11235 ...
   7 |  170   1727    8216    27168     70984    159180 ...
   8 |  579   9658   64798   274360    876790   2319678 ...
   9 | 1996  55657  521900  2837208  11069760  34582800 ...
  10 | 7021 325390 4272967 29828330 142148343 524470485 ...
  ...
		

Crossrefs

Columns k=3..5 are A003446, A005035, A005039.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    F[n_, k_] := DivisorSum[GCD[n-1, k], EulerPhi[#]*u[(n-1)/#, k, k/#] &]/k;
    T[n_, k_] := (F[n, k] + If[OddQ[k], If[OddQ[n], u[(n-1)/2, k, (k-1)/2], u[n/2-1, k, k-1]], If[OddQ[n], u[(n-1)/2, k, k/2+1], u[n/2-1, k, k]]])/2;
    Table[T[n-k-1, k], {n, 1, 14}, {k, n-2, 3, -1}] // Flatten (* Jean-François Alcover, Jan 19 2018, translated from PARI *)
  • PARI
    \\ here u is Fuss-Catalan sequence with p = k+1.
    u(n,k,r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    F(n,k) = {sumdiv(gcd(n-1,k), d, eulerphi(d)*u((n-1)/d,k,k/d))/k}
    T(n,k) = {(F(n,k) + if(k%2, if(n%2, u((n-1)/2,k,(k-1)/2), u(n/2-1,k,(k-1))), if(n%2, u((n-1)/2,k,k/2+1), u(n/2-1,k,k)) ))/2;}
    for(n=1, 10, for(k=3, 8, print1(T(n, k), ", ")); print);
    
  • Python
    from sympy import binomial, gcd, totient, divisors
    def u(n, k, r): return r*binomial((k - 1)*n + r, n)//((k - 1)*n + r)
    def F(n, k): return sum([totient(d)*u((n - 1)//d, k, k//d) for d in divisors(gcd(n - 1, k))])//k
    def T(n, k): return (F(n, k) + ((u((n - 1)//2, k, (k - 1)//2) if n%2 else u(n//2 - 1, k, k - 1)) if k%2 else (u((n - 1)//2, k, k//2 + 1) if n%2 else u(n//2 - 1, k, k))))//2
    for n in range(1, 11): print([T(n, k) for k in range(3, 9)]) # Indranil Ghosh, Dec 13 2017, after PARI code

Formula

T(n,k) ~ A295222(n,k)/2 for fixed k.

A132081 Triangle (read by rows) with row sums = Motzkin sums (also called Riordan numbers) (A005043): T(n,s) = (1/n)*C(n,s)*(C(n-s,s+1) - C(n-s-2,s-1)).

Original entry on oeis.org

1, 1, 2, 1, 5, 1, 9, 5, 1, 14, 21, 1, 20, 56, 14, 1, 27, 120, 84, 1, 35, 225, 300, 42, 1, 44, 385, 825, 330, 1, 54, 616, 1925, 1485, 132, 1, 65, 936, 4004, 5005, 1287, 1, 77, 1365, 7644, 14014, 7007, 429
Offset: 3

Views

Author

Frank R. Bernhart (farb45(AT)gmail.com), Oct 30 2007

Keywords

Comments

Whereas A005043 counts certain trees, or noncrossed partitions, this subdivides the counts according to the number of leaves, or the lattice rank. Analogous to the Narayana triangle (A001263), where rows sum to the Catalan numbers.
Diagonals of A132081 are rows of A033282. - Tom Copeland, May 08 2012
Related to the number of certain non-crossing partitions for the root system A_n. Cf. p. 12, Athanasiadis and Savvidou. See also A108263 and A100754. - Tom Copeland, Oct 19 2014

Examples

			A005043(6) = 15 = 1+9+5 since NC (noncrossed, planar) partitions of 6-point cycle without singletons have 1,9,5 items with 1,2,3 blocks.
Triangle begins:
  1;
  1,   2;
  1,   5;
  1,   9,   5;
  1,  14,  21;
  1,  20,  56,  14;
  1,  27, 120,  84;
  1,  35, 225, 300,  42;
  1,  44, 385, 825, 330;
  ...
		

Crossrefs

Programs

  • Magma
    /* triangle excluding 0 */ [[Binomial(n,k)*Binomial(n-2-k,k)/(k+1): k in [0..n-3]]: n in [3..15]]; // Vincenzo Librandi, Oct 19 2014
  • Mathematica
    Map[Most, Table[(1/n) Binomial[n, s] (Binomial[n - s, s + 1] - Binomial[n - s - 2, s - 1]), {n, 3, 14}, {s, 0, n}] /. k_ /; k <= 0 -> Nothing] // Flatten (* Michael De Vlieger, Jan 09 2016 *)

Formula

a(n,k) = binomial(n,k)*binomial(n-2-k,k)/(k+1). - David Callan, Jul 22 2008
From Peter Bala, Oct 22 2008: (Start)
O.g.f.: (1 + x - sqrt(1 - 2*x + x^2*(1 - 4*a)))/(2*x*(1 + a*x)) = 1 + a*x^2 + a*x^3 + (a + 2*a^2)*x^4 + (a + 5*a^2)*x^5 + (a + 9*a^2 + 5*a^3)*x^6 + ... . [corrected by Jason Yuen, Sep 22 2024]
Define a functional I on formal power series of the form f(x) = 1 + a*x + b*x^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim n -> infinity f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
Let now f(x) = 1 + a*x^2 + a*x^3 + a*x^4 + ... . Then the o.g.f. for this table is I(f(x)) = 1 + a*x^2 + a*x^3 + (a + 2*a^2)*x^4 + (a + 5*a^2)*x^5 + (a + 9*a^2 + 5*a^3)*x^6 + ... . Cf. A001263 and A108767. (End)

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar
Name corrected by Emeric Deutsch, Dec 20 2014

A133336 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 5, 1, 0, 14, 21, 9, 1, 0, 42, 84, 56, 14, 1, 0, 132, 330, 300, 120, 20, 1, 0, 429, 1287, 1485, 825, 225, 27, 1, 0, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 0, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 0, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2007

Keywords

Comments

Mirror image of triangle A086810; another version of A126216.
Equals A131198*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 23 2007
Diagonal sums: A119370. - Philippe Deléham, Nov 09 2009

Examples

			Triangle begins:
    1;
    1,    0;
    2,    1,    0;
    5,    5,    1,   0;
   14,   21,    9,   1,   0;
   42,   84,   56,  14,   1,  0;
  132,  330,  300, 120,  20,  1, 0;
  429, 1287, 1485, 825, 225, 27, 1, 0;
		

Crossrefs

Programs

  • Magma
    [[Binomial(n-1,k)*Binomial(2*n-k,n)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    Table[Binomial[n-1,k]*Binomial[2*n-k,n]/(n+1), {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n-1,k)*binomial(2*n-k,n)/(n+1), ", "))) \\ G. C. Greubel, Feb 05 2018
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*(-2)^k*5^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
T(n,k) = binomial(n-1,k)*binomial(2n-k,n)/(n+1), k <= n. - Philippe Deléham, Nov 02 2009

A007160 Number of diagonal dissections of a convex (n+6)-gon into n regions.

Original entry on oeis.org

1, 20, 225, 1925, 14014, 91728, 556920, 3197700, 17587350, 93486536, 483367885, 2442687975, 12109051500, 59053512000, 283963030560, 1348824395160, 6338392712550, 29503515951000, 136173391604250
Offset: 1

Views

Author

Keywords

Comments

Number of standard tableaux of shape (n,n,1,1,1,1) (see Stanley reference). - Emeric Deutsch, May 20 2004
Number of increasing tableaux of shape (n+4,n+4) with largest entry 2n+4. An increasing tableau is a semistandard tableau with strictly increasing rows and columns, such that the set of entries forms an initial segment of the positive integers. - Oliver Pechenik, May 02 2014
a(n) = number of noncrossing partitions of 2n+4 into n blocks all of size at least 2. - Oliver Pechenik, May 02 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A033282.

Programs

  • Magma
    [Binomial(n+3, 4)*Binomial(2*n+4, n-1)/n  : n in [1..30]]; // Vincenzo Librandi, Nov 17 2011
  • Mathematica
    a[n_] := (n+1)(n+2)(n+3)*Binomial[2n+4, n-1]/24; Table[a[n], {n, 1, 19}](* Jean-François Alcover, Nov 16 2011 *)

Formula

D-finite with recurrence (n+5)(n-1)*n*a(n) = 2(2n+3)(n+3)(n+2)a(n-1).
a(n) = binomial(n+3, 4)*binomial(2n+4, n-1)/n.

Extensions

Offset is correct!

A243660 Triangle read by rows: the x = 1+q Narayana triangle at m=2.

Original entry on oeis.org

1, 3, 2, 12, 16, 5, 55, 110, 70, 14, 273, 728, 702, 288, 42, 1428, 4760, 6160, 3850, 1155, 132, 7752, 31008, 50388, 42432, 19448, 4576, 429, 43263, 201894, 395010, 418950, 259350, 93366, 18018, 1430, 246675, 1315600, 3010700, 3853696, 3010700, 1466080, 433160, 70720, 4862
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*...*(x+2n+1) / (n! * (2n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 09 2022
The Maple code T(n,k) := binomial(3*n+1-k,n-k)*binomial(2*n,k-1)/n: with(sumtools): sumrecursion( (-1)^(k+1)*T(n,k)*binomial(x+3*n-k+1, 3*n-k+1), k, s(n) ); returns the recurrence 2*(2*n+1)*n^2*s(n) = (x+n)*(x+2*n)*(x+2*n+1)*s(n-1). The above observation follows from this. - Peter Bala, Oct 30 2022

Examples

			Triangle begins:
     1;
     3,    2;
    12,   16,    5;
    55,  110,   70,   14;
   273,  728,  702,  288,   42;
  1428, 4760, 6160, 3850, 1155,  132;
  ...
		

Crossrefs

Row sums give A034015(n-1).
The case m=1 is A126216 or A033282 (its mirror image).
The case m=3 is A243661.
The right diagonal is A000108.
The left column is A001764.
Same table as A383453, transposed. - Dan Eilers, May 06 2025

Programs

  • Mathematica
    polrecip[P_, x_] := P /. x -> 1/x // Together // Numerator;
    P[n_, m_] := Sum[Binomial[m n + 1, k] Binomial[(m+1) n - k, n - k] (1-x)^k x^(n-k), {k, 0, n}]/(m n + 1);
    T[m_] := Reap[For[i=1, i <= 20, i++, z = polrecip[P[i, m], x] /. x -> 1+q; Sow[CoefficientList[z, q]]]][[2, 1]];
    T[2] // Flatten (* Jean-François Alcover, Oct 08 2018, from PARI *)
  • PARI
    N(n,m)=sum(k=0,n,binomial(m*n+1,k)*binomial((m+1)*n-k,n-k)*(1-x)^k*x^(n-k))/(m*n+1);
    T(m)=for(i=1,20,z=subst(polrecip(N(i,m)),x,1+q);print(Vecrev(z)));
    T(2)  /* Lars Blomberg, Jul 17 2017 */
    
  • PARI
    T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n; \\ Andrew Howroyd, Nov 23 2018

Formula

From Werner Schulte, Nov 23 2018: (Start)
T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n.
More generally: T(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(m*n,k-1) / n, where m = 2.
Sum_{k=1..n} (-1)^k * T(n,k) = -1. (End)

Extensions

Corrected example and a(22)-a(43) from Lars Blomberg, Jul 12 2017
a(44)-a(45) from Werner Schulte, Nov 23 2018

A080721 Triangle of binomial(n,k)*(binomial(n+k,k)-binomial(n+k-2,k-1)).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 9, 21, 14, 1, 16, 66, 100, 50, 1, 25, 160, 410, 455, 182, 1, 36, 330, 1260, 2310, 2016, 672, 1, 49, 609, 3220, 8610, 12222, 8778, 2508, 1, 64, 1036, 7224, 26250, 53592, 61908, 37752, 9438, 1, 81, 1656, 14700, 69300, 189882, 312312, 303732, 160875, 35750, 1
Offset: 0

Views

Author

Paul Boddington, Mar 07 2003

Keywords

Comments

For n>1 and 0 <= k <= n, a(n,k) is the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's 'cluster algebra' of finite type D_n.
Triangle of f-vectors of the simplicial complexes dual to the generalized associahedra of type D_n (n >= 2). See A145903 for the corresponding triangle of h-vectors. For the triangles of f-vectors of type A and type B associahedra see A033282 and A063007 respectively. [Peter Bala, Oct 28 2008]

Examples

			Contribution from _Peter Bala_, Oct 28 2008: (Start)
Triangle begins
n\k|..0....1....2....3....4....5
================================
0..|..1
1..|..1....1
2..|..1....4....4
3..|..1....9...21...14
4..|..1...16...66..100...50
5..|..1...25..160..410..455..182
...
(End)
		

Crossrefs

A051924 (main diagonal), A145903( h-vectors type D associahedra). [From Peter Bala, Oct 28 2008]

Programs

  • Maple
    A080721 := proc(n,k)
        binomial(n,k)*(binomial(n+k,k)-binomial(n+k-2,k-1))
    end proc: # R. J. Mathar, Mar 22 2013
  • Mathematica
    Flatten[Table[Binomial[n,k](Binomial[n+k,k]-Binomial[Abs[n+k-2],k-1]),{n,0,10},{k,0,n}]] (* Harvey P. Dale, Feb 20 2013 *)
  • PARI
    T(n,k)=binomial(n,k)*(binomial(n+k,k)-binomial(n+k-2,k-1))
    for (n=0, 10, for (k=0,n, print1(T(n,k),", ")));
    /* Joerg Arndt, Feb 21 2013 */

A232206 Triangle read by rows: T(n,k) is the number of non-equivalent regular polygons with n+1 edges, one of which is rooted, which are dissected by non-intersecting diagonals into k regions, such that two such polygons are identified up to reflection along the rooted edge and twisting along the diagonals that does not affect the root edge (for 1 <= k <= n-1 and n >= 2).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 8, 3, 1, 8, 22, 20, 6, 1, 11, 46, 73, 49, 11, 1, 15, 87, 206, 233, 119, 23, 1, 19, 147, 485, 807, 689, 288, 46, 1, 24, 236, 1021, 2320, 2891, 1988, 696, 98, 1, 29, 356, 1960, 5795, 9800, 9737, 5561, 1681, 207, 1, 35, 520, 3525, 13088, 28586, 38216, 31350, 15322, 4062, 451, 1, 41, 730, 5989, 27224, 74280, 127465, 139901, 97552, 41558, 9821, 983
Offset: 2

Views

Author

N. J. A. Sloane, Nov 21 2013

Keywords

Comments

From Petros Hadjicostas, Jan 20 2018: (Start)
According to Devadoss and Read (2001), the associahedron or Stasheff polytope K_n is a convex polytope of dim n-2 with co-dimension k faces corresponding to using k non-intersecting diagonals on a regular (n+1)-gon. If we redraw the picture of the dissected regular (n+1)-gon so that "every region of the dissection becomes a regular polygon without diagonals", then the resulting object is called a cluster, "where each regular polygon of the cluster is called a cell".
Two regular polygons G_1 and G_2 are of the same "dimension if their corresponding faces [on K_n] are of the same dimension"; of the same "type if their corresponding faces [on K_n] are the same polytope"; and of the same "class if they are identified under the actions of D_n [= dihedral group of order 2*n] and twisting [along the diagonals]".
In order to count how many faces of K_n belong to a given class (as defined above), Devadoss and Read (2001) follow the methodology of Read (1974, 1978) and first transform the regular (n+1)-gons (corresponding to the faces of K_n) into clusters, as mentioned above. Then they enumerate three kinds of clusters: those rooted at an outside edge (A-clusters); those rooted at a cell (B-clusters); and those rooted at an inside cell (C-clusters). In each one of these three kinds of clusters, two clusters are identified up to twisting along an edge (inside or outside depending on the case). Thus, the enumeration has to take twisting into account.
The g.f.s of these three kinds of clusters (A, B, and C) are derived, and these three g.f.s are used to derive the g.f. of the number of different classes of K_n of co-dimension k. See Section 3 in Devadoss and Read (2001).
The current triangular array, T(n,k), is the number of non-equivalent A-clusters (i.e., those rooted at an outside edge) having k cells and n outside edges, not counting the root edge, for 1 <= k <= n-1 and n>=2. Two such A-clusters are equivalent up to twisting the rooted edge or an inside edge separating two cells (as long as the inside twisting does not affect the rooted edge).
Read (1974, 1978) calls the A-clusters "out-rooted clusters". The difference between out-rooted clusters (= A-clusters) in Devadoss and Read (2001) and those in Read (1978) is that, in the first paper, two A-clusters are considered equivalent if one can be obtained from the other by twisting the rooted edge or an inside edge (separating two cells), while in the second paper twisting is not allowed.
If twisting is not allowed, then the number of (non-equivalent) A-clusters having k cells and n outside edges, not counting the root edge, is given by sequence A033282(n+1, k-1) = (1/k)*binomial(n-2,k-1)*binomial(n+k-1,k-1) for 1 <= k <= n-1 and n>=2. This is also the number of faces of K_n of co-dimension k-1. See Table 3 in Devadoss and Read (2001) and Table 1 in Read (1978). Unfortunately, in Table 1 in Read (1978), the label of each column is the number of outside edges including the rooted edge (i.e., n+1 rather than n).
Define T(n,k) = 0 for 0 <= n <= k, and T(n=1, k=0) = 1. Let also C(s,t) = Sum_{n>=0, k>=0} T(n,k)*s^n*t^k. (On p. 78 of their paper, Devadoss and Read (2001) use the notation a_{m,n} for T(n,m) and the notation A(x,y) for C(y,x), i.e., A(x,y) = Sum_{m>=0, n>=0} a_{m,n}*x^m*y^n in their paper.)
On p. 79, Eq. (3.2), of their paper, they prove that C(s,t) = s + (t/2)*(C(s,t)^2/(1-C(s,t)) + (1 + C(s,t))*C(s^2, t^2)/(1-C(s^2, t^2))). Unfortunately, the factor t in the previous formula is left out (i.e., it is a typo), and the same typo is reproduced in Schöbel and Veselov (2014, 2015).
We have C(s,t) = s+ t*s^2 + (t^2 + t)*s^3 + (2*t^3 + 3*t^2 + t)*s^4 + (3*t^4 + 8*t^3 + 5*t^2 + t)*s^5 + ...
Note that Sum_{0 <= k <= n-1} T(n,k) = A032132(n) for n>=1; T(n, k=1) = 1 for n>=2; T(k+1,k) = A001190(k+1) for k>=1, which are the Wedderburn-Etherington numbers; and T(n, k=2) = A024206(n-1) for n>=2.
According to Schöbel and Veselov (2014, 2015), for n>=2 and 0 <= p <= n-1, T(n+1, n-p) = A295380(n,p) is the number of inequivalent canonical forms for separation coordinates of the hypersphere S^n with p independent continuous parameters.
(End)

Examples

			From _Petros Hadjicostas_, Jan 20 2018: (Start)
According to Devadoss and Read (2015), triangle T(n,k) begins as follows:
(n=2)  1,
(n=3)  1,  1,
(n=4)  1,  3,   2,
(n=5)  1,  5,   8,    3,
(n=6)  1,  8,  22,   20,    6,
(n=7)  1, 11,  46,   73,   49,   11,
(n=8)  1, 15,  87,  206,  233,  119,   23,
(n=9)  1, 19, 147,  485,  807,  689,  288,   46,
(n=10) 1, 24, 236, 1021, 2320, 2891, 1988,  696,   98,
(n=11) 1, 29, 356, 1960, 5795, 9800, 9737, 5561, 1681, 207,
...
Geometrical example for n=5: If no twisting is allowed, the number of regular (n+1)-gons (= hexagons) with a rooted edge and dissected into k regions by non-intersecting diagonals is given by A033282(n+1, k-1) = A033282(6, k-1): 1, 9, 21, and 14 for k = 1, 2, 3, 4, respectively.
Recall that, according to Devadoss and Read (2001), two regular (unrooted) polygons G_1 and G_2 are of the same "class" if they are identified under the actions of D_n (= dihedral group of order 2*n) and twisting along the diagonals. To avoid confusion, we call two such unrooted equivalent polygons as being of the same DT-class (D for "dihedral" and T for "twisting"). According to Table 5 (p. 92) in Devadoss and Read (2001), the numbers of DT-classes for regular hexagons dissected into k regions (by k-1 non-intersecting diagonals) are 1, 2, 3, 2 for k = 1, 2, 3, 4, respectively. When an edge is rooted, each one of these DT-classes is subdivided into subclasses.
Call the regular hexagons ABCDEF with FA being the rooted edge (base).
For k=1, we have T(5,1) = 1 rooted regular hexagon with no intersecting diagonals.
For k=2, we have T(5,2) = 5 equivalent rooted regular hexagons with 1 diagonal. The equivalence classes are as follows according to the single dissecting diagonal:
Class 1a: AE, FB; Class 1b: AC, FD; Class 1c: BD, EC; (DT-class 1 has 6 hexagons)
Class 2a: AD, FC; Class 2b: BE; (DT-class 2 has 3 hexagons).
Note that 6 + 3 = 9 =  A033282(5+1, 2-1).
For k=3, we have T(5,3) = 8 equivalent rooted regular hexagons with 2 non-intersecting diagonals. The equivalence classes are as follows according to the two diagonals:
Class 1a: (AC, AE), (FB, FD), (BD, BF), (EA, EC);
Class 1b: (DB, DF), (CE, CA); (DT-class 1 has 6 hexagons)
Class 2a: (DB, EA), (CE, BF);
Class 2b: (DF, CA); (DT-class 2 has 3 hexagons)
Class 3a: (DA, EA), (FC, FB), (EA, EB), (BE, BF);
Class 3b: (AC, AD), (FC, FD), (DA, DB), (CE, CF);
Class 3c: (BD, BE), (EC, EB);
Class 3d: (CF, CA), (DA, DF); (DT-class 3 has 12 hexagons)
Note that 6 + 3 + 12 = 21 = A033282(5+1, 3-1).
For k=4, we have T(5,4) = 3 equivalent rooted regular hexagons with 3 non-intersecting diagonals. The equivalence classes are as follows according to the three diagonals:
Class 1: (EA, AC, CE), (BD, DF, FB); (DT-class 1 has 2 hexagons)
Class 2a: (DF, DA, AC), (DF, FC, CA), (CE, CF, CA), (DF, DA, DB);
Class 2b: (CE, BE, BF), (BD, BE, BF), (EC, EB, EA), (DB, EB, EA), (EC, CF, FB), (DB, DA, AE), (FD, FC, FB), (AE, AD, AC); (DT class 2 has 12 hexagons)
Note that 2 + 12 = 14 = A033282(5+1, 4-1).
Recall that two rooted hexagons are equivalent iff they are a reflection of each other along the rooted edge or one can be obtained from the other by twisting a diagonal as long as the twisting does not affect the rooted edge.
The case k = 4 = n-1 above is related to the triangulation of a convex polygon and the Wedderburn-Etherington commutative bracketing problem that appear in Comtet (1974, pp. 54-55). Devadoss and Read (2001, p. 89) claim that T(n,k) is the number of possible ways of using k-1 pairs of brackets on n commutative variables, but it is not clear how each one of the above hexagons (from k=1 to k=3) can be transformed into some kind of a generalized commutative bracketing problem.
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 54-55 and 74-75.

Crossrefs

Cf. A001190 (main diagonal), A024206 (second column), A032132 (row sums), A295380 (mirror image).

Programs

  • Mathematica
    rows = 12; A[, ] = 0;
    Do[A[s_, t_] = Series[s+(t/2)(A[s, t]^2/(1-A[s, t])+(1+A[s, t]) A[s^2, t^2] / (1-A[s^2, t^2])), {s, 0, rows+1}, {t, 0, rows+1}] // Normal, {rows+1}];
    Rest[CoefficientList[#, t]]& /@ Drop[CoefficientList[A[s, t], s], 2] // Flatten (* Jean-François Alcover, Sep 02 2018 *)
  • PARI
    BIKxy(p)={(1/(1-p) + (1+p)/subst(subst(1-p, x, x^2), y, y^2))/2}
    A(n)={my(p=x); for(i=2, n+1, p+=x^i*y*polcoeff(BIKxy(p + O(x*x^i)), i)); [Vecrev(q/y) | q<-Vecrev((p-x)/x^2)]}
    { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 31 2018
  • SageMath
    #This is a crude Sage program on how to derive the g.f. of any column in the triangle given that you have correctly derived the g.f.s of the previous columns. Suppose you have the expansion for C(s,t) w.r.t. t up to the power of 3 and you want to get the coefficient of t^4.
    s,t=var('s,t')
    C(s,t) = s + t*s^2/(1-s) + t^2*s^3*(1+s-s^2)/((1+s)*(1-s)^3) + t^3*s^4*(2+2*s-2*s^3+s^4)/((1+s)^2*(1-s)^5)
    B(s,t)=s+(t/2)*(C(s,t)^2/(1-C(s,t))+(1+C(s,t))*C(s^2,t^2)/(1-C(s^2,t^2)))-C(s,t)
    factor(taylor(B(s,t),t,0,4)/t^4)
    # Petros Hadjicostas, Jan 21 2018
    

Formula

From Petros Hadjicostas, Jan 20 2018: (Start)
G.f.: If C(s,t) = Sum_{n>=0, k>=0} T(n,k)*s^n*t^k (with T(n=1,k=0) = 1), then C(s,t) = s + (t/2)*(C(s,t)^2/(1-C(s,t)) + (1 + C(s,t))*C(s^2, t^2)/(1-C(s^2, t^2))).
Note that t*C(s,t) = Sum_{k>=1} T(k,k-1)*(s*t)^k + Sum_{k>=2} (s*t)^k*Sum_{n >= k+1} T(n,k-1)*s^{n-k}. If we let w = s*t and D(s,w) = (w/s)*C(s,w/s), then the above functional equation implies that E(w): = lim_{s -> 0} D(s,w) = Sum_{k>=1} T(k,k-1)*w^k satisfies E(w) = w + (1/2)*(E(w)^2 + E(w^2)), which is the g.f. for the Wedderburn-Etherington numbers in sequence A001190. Thus, T(k,k-1) = A001190(k) for k>=1.
Expansion w.r.t to t: C(s,t) = s + t*s^2/(1-s) + t^2*s^3*(1+s-s^2)/((1+s)*(1-s)^3) + t^3*s^4*(2+2*s-2*s^3+s^4)/((1+s)^2*(1-s)^5) + t^4*s^5*(3+8*s+2*s^2-2*s^3-2*s^4+3*s^5-s^6)/((1+s)^3*(1-s)^7) + t^5*s^6*(6+19*s+30*s^2+15*s^3+23*s^4-4*s^5+2*s^6-4*s^7+6*s^8-4*s^9+s^10)/((1+s^2)*(1+s)^4*(1-s)^9) + ... (It can be proven using a symbolic computation package by manipulating the above functional equation by Devadoss and Read.)
This means that, in the above expansion for C(s,t), the coefficient of t is the g.f. of the first column of the triangle below, the coefficient of t^2 is the g.f. of the second column of the triangle below, and so on.
(End)

Extensions

Name edited by Petros Hadjicostas, Jan 20 2018
Offset corrected by Andrew Howroyd, Aug 31 2018
Previous Showing 21-30 of 35 results. Next