cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 106 results. Next

A092206 Positive integers that are not of the form n^2 or 3n^2.

Original entry on oeis.org

2, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84
Offset: 1

Views

Author

Eric W. Weisstein, Feb 24 2004

Keywords

Comments

Values of n such that Q(sqrt(-n)) has 2 units.
A214295(a(n)) = 0. - Reinhard Zumkeller, Jul 12 2012

Crossrefs

Programs

  • Haskell
    a092206 n = a092206_list !! (n-1)
    a092206_list = filter ((== 0) . a214295) [1..]
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Mathematica
    Select[ Range[100], Not[ IntegerQ[ Sqrt[#] ] || IntegerQ[ Sqrt[#/3] ] ]&] (* Jean-François Alcover, Oct 30 2012 *)
  • PARI
    is(n)=!issquare(n/3^valuation(n,3)) \\ Charles R Greathouse IV, Oct 30 2012

A105020 Array read by antidiagonals: row n (n >= 0) contains the numbers m^2 - n^2, m >= n+1.

Original entry on oeis.org

1, 3, 4, 5, 8, 9, 7, 12, 15, 16, 9, 16, 21, 24, 25, 11, 20, 27, 32, 35, 36, 13, 24, 33, 40, 45, 48, 49, 15, 28, 39, 48, 55, 60, 63, 64, 17, 32, 45, 56, 65, 72, 77, 80, 81, 19, 36, 51, 64, 75, 84, 91, 96, 99, 100, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 121
Offset: 0

Views

Author

Keywords

Comments

A "Goldbach Conjecture" for this sequence: when there are n terms between consecutive odd integers (2n+1) and (2n+3) for n > 0, at least one will be the product of 2 primes (not necessarily distinct). Example: n=3 for consecutive odd integers a(7)=7 and a(11)=9 and of the 3 sequence entries a(8)=12, a(9)=15 and a(10)=16 between them, one is the product of 2 primes a(9)=15=3*5. - Michael Hiebl, Jul 15 2007
A024352 gives distinct values in the array, minus the first row (1, 4, 9, 16, etc.). a(n) gives all solutions to the equation x^2 + xy = n, with y mod 2 = 0, x > 0, y >= 0. - Andrew S. Plewe, Oct 19 2007
Alternatively, triangular sequence of coefficients of Dynkin diagram weights for the Cartan groups C_n: t(n,m) = m*(2*n - m). Row sums are A002412. - Roger L. Bagula, Aug 05 2008

Examples

			Array begins:
  1  4  9 16 25 36  49  64  81 100 ...
  3  8 15 24 35 48  63  80  99 120 ...
  5 12 21 32 45 60  77  96 117 140 ...
  7 16 27 40 55 72  91 112 135 160 ...
  9 20 33 48 65 84 105 128 153 180 ...
  ...
Triangle begins:
   1;
   3,  4;
   5,  8,  9;
   7, 12, 15, 16;
   9, 16, 21, 24, 25;
  11, 20, 27, 32, 35, 36;
  13, 24, 33, 40, 45, 48, 49;
  15, 28, 39, 48, 55, 60, 63, 64;
  17, 32, 45, 56, 65, 72, 77, 80, 81;
  19, 36, 51, 64, 75, 84, 91, 96, 99, 100;
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Programs

  • Magma
    [(k+1)*(2*n-k+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 15 2023
    
  • Mathematica
    t[n_, m_]:= (n^2 - m^2); Flatten[Table[t[i, j], {i,12}, {j,i-1,0,-1}]]
    (* to view table *) Table[t[i, j], {j,0,6}, {i,j+1,10}]//TableForm (* Robert G. Wilson v, Jul 11 2005 *)
    Table[(k+1)*(2*n-k+1), {n,0,15}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 05 2008 *)
  • SageMath
    def A105020(n,k): return (k+1)*(2*n-k+1)
    flatten([[A105020(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Mar 15 2023

Formula

a(n) = r^2 - (r^2 + r - m)^2/4, where r = round(sqrt(m)) and m = 2*n+2. - Wesley Ivan Hurt, Sep 04 2021
a(n) = A128076(n+1) * A105020(n+1). - Wesley Ivan Hurt, Jan 07 2022
From G. C. Greubel, Mar 15 2023: (Start)
Sum_{k=0..n} T(n, k) = A002412(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*((1+(-1)^n)*A000384((n+2)/2) - (1- (-1)^n)*A000384((n+1)/2)). (End)

Extensions

More terms from Robert G. Wilson v, Jul 11 2005

A200741 Table of distinct numbers of the form v*w + w*u + u*v with 1 <= u <= v <= w <= n.

Original entry on oeis.org

3, 3, 5, 8, 12, 3, 5, 7, 8, 11, 12, 15, 16, 21, 27, 3, 5, 7, 8, 9, 11, 12, 14, 15, 16, 19, 20, 21, 24, 26, 27, 32, 33, 40, 48, 3, 5, 7, 8, 9, 11, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 35, 38, 39, 40, 45, 47, 48, 55, 56, 65, 75, 3, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 21 2011

Keywords

Comments

A100440(n) = number of terms in row n;
T(1,1) = 3; right edge: T(n,A100440(n)) = A033428(n);
T(n,k) = T(n+1,k) for k <= A200742(n);
distinct terms per row of table in A200737.

Programs

  • Haskell
    import Data.List (nub)
    a200741 n k = a200741_tabl !! (n-1) !! (k-1)
    a200741_row = nub . a200737_row
    a200741_tabl = map a200741_row [1..]
  • Mathematica
    row[n_] := Table[v*w + w*u + u*v, {u, 1, n}, {v, u, n}, {w, v, n}] // Flatten // Union; Table[row[n], {n, 1, 6}] // Flatten (* Jean-François Alcover, Dec 04 2013 *)

A219056 a(n) = 3*n^4.

Original entry on oeis.org

0, 3, 48, 243, 768, 1875, 3888, 7203, 12288, 19683, 30000, 43923, 62208, 85683, 115248, 151875, 196608, 250563, 314928, 390963, 480000, 583443, 702768, 839523, 995328, 1171875, 1370928, 1594323, 1843968, 2121843, 2430000, 2770563, 3145728, 3557763, 4009008
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 11 2012

Keywords

Crossrefs

Programs

  • Haskell
    a219056 = (* 3) . (^ 4)
    
  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0, 3, 48, 243, 768},100] (* or *) Table[3*n^4, {n,0,50}] (* G. Greubel, Jun 22 2016 *)
  • Maxima
    makelist(3*n^4,n,0,30); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n) = 3*n^4; \\ Michel Marcus, Jan 26 2022

Formula

a(n) = A219069(n,n) for n > 0;
a(n) = A008585(A000583(n)) = A000290(n)*A033428(n).
From Chai Wah Wu, Jun 22 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: 3*x*(1 + x)*(1 + 10*x + x^2)/(1 - x)^5. (End)
E.g.f.: 3*x*(1 + 7*x + 6*x^2 + x^3)*exp(x). - G. C. Greubel, Jun 22 2016

A242669 a(n) = n*floor(n/3).

Original entry on oeis.org

0, 0, 0, 3, 4, 5, 12, 14, 16, 27, 30, 33, 48, 52, 56, 75, 80, 85, 108, 114, 120, 147, 154, 161, 192, 200, 208, 243, 252, 261, 300, 310, 320, 363, 374, 385, 432, 444, 456, 507, 520, 533, 588, 602, 616, 675, 690, 705, 768, 784, 800, 867, 884, 901, 972, 990
Offset: 0

Views

Author

Bruno Berselli, Jul 01 2014

Keywords

Comments

For n = 0, 1, 2, 4, 8, 49, 98, 676, 1352, 9409, 18818, 131044, 262088, 1825201, 3650402, ... a(n) is a square.

Crossrefs

Cf. A000290 (n^2), A010762 (floor(n/2)*floor(n/3)), A093353 (n*floor(n/2)), A213033 (n*floor(n/2)*floor(n/3)), A233035 (n*floor(n/4)).
Cf. A002264 (floor(n/3)).

Programs

  • Magma
    [n*Floor(n/3): n in [0..60]];
    
  • Mathematica
    Table[n Floor[n/3], {n, 0, 60}]
  • PARI
    a(n)=n\3*n \\ Charles R Greathouse IV, Oct 07 2015
  • Sage
    [n*floor(n/3) for n in (0..60)];
    

Formula

G.f.: x^3*(3 + x + x^2 + x^3)/((1 - x)^3*(1 + x + x^2)^2).
a(3m) = A033428(m), a(3m+1) = A049451(m), a(3m+2) = A045944(m).
Sum_{n>=3} (-1)^(n+1)/a(n) = 9/4 + Pi^2/36 - Pi/(2*sqrt(3)) - 2*log(2). - Amiram Eldar, Mar 30 2023

A244634 a(n) = 27*n^2.

Original entry on oeis.org

0, 27, 108, 243, 432, 675, 972, 1323, 1728, 2187, 2700, 3267, 3888, 4563, 5292, 6075, 6912, 7803, 8748, 9747, 10800, 11907, 13068, 14283, 15552, 16875, 18252, 19683, 21168, 22707, 24300, 25947, 27648, 29403, 31212, 33075, 34992, 36963, 38988, 41067, 43200, 45387
Offset: 0

Views

Author

Vincenzo Librandi, Jul 03 2014

Keywords

Crossrefs

Cf. similar sequences listed in A244630.

Programs

  • Magma
    [27*n^2: n in [0..40]];
    
  • Mathematica
    Table[27 n^2, {n, 0, 40}]
  • PARI
    a(n)=27*n^2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: 27*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 27*A000290(n) = 9*A033428(n) = 3*A016766(n). - Omar E. Pol, Jul 03 2014
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 27*x*(1 + x)*exp(x).
a(n) = n*A305548(n). (End)

A249327 Rectangular array T(n,k) = f(n)*k^2, where f = A005117 (squarefree numbers); n, k >= 1; read by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 8, 3, 16, 18, 12, 5, 25, 32, 27, 20, 6, 36, 50, 48, 45, 24, 7, 49, 72, 75, 80, 54, 28, 10, 64, 98, 108, 125, 96, 63, 40, 11, 81, 128, 147, 180, 150, 112, 90, 44, 13, 100, 162, 192, 245, 216, 175, 160, 99, 52, 14, 121, 200, 243, 320, 294, 252, 250
Offset: 1

Views

Author

Clark Kimberling, Oct 26 2014

Keywords

Comments

Every positive integer occurs exactly once.

Examples

			Northwest corner:
1   4    9    16   25    36    49
2   8    18   32   50    72    98
3   12   27   48   75    108   147
5   20   45   80   125   180   245
6   24   54   96   150   216   294
		

Crossrefs

Cf. A005117, A000037 (is partitioned by the rows of A249327, excluding the first).

Programs

  • Mathematica
    z = 20; f = Select[Range[10000], SquareFreeQ[#] &];
    u[n_, k_] := f[[n]]*k^2; t = Table[u[n, k], {n, 1, 20}, {k, 1, 20}];
    TableForm[t] (* A249327 array *)
    Table[u[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* A249327 sequence *)

Formula

T(1,k) = A000290(k), T(2,k) = A001105(k), T(3,k) = A033428(k), T(4,k) = A033429(k), T(5,.) through T(10,.) are A033581, A033582, A033583, A033584, A152742 and A144555 without initial 0. - M. F. Hasler, Oct 31 2014

A308422 a(n) = n^2 if n odd, 3*n^2/4 if n even.

Original entry on oeis.org

0, 1, 3, 9, 12, 25, 27, 49, 48, 81, 75, 121, 108, 169, 147, 225, 192, 289, 243, 361, 300, 441, 363, 529, 432, 625, 507, 729, 588, 841, 675, 961, 768, 1089, 867, 1225, 972, 1369, 1083, 1521, 1200, 1681, 1323, 1849, 1452, 2025, 1587, 2209, 1728, 2401, 1875, 2601, 2028, 2809, 2187, 3025
Offset: 0

Views

Author

Ilya Gutkovskiy, May 26 2019

Keywords

Comments

Moebius transform of A076577.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], n^2, 3 n^2/4]; Table[a[n], {n, 0, 55}]
    nmax = 55; CoefficientList[Series[x (1 + 3 x + 6 x^2 + 3 x^3 + x^4)/(1 - x^2)^3, {x, 0, nmax}], x]
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 1, 3, 9, 12, 25}, 56]
    Table[(7 - (-1)^n) n^2/8, {n, 0, 55}]

Formula

G.f.: x*(1 + 3*x + 6*x^2 + 3*x^3 + x^4)/(1 - x^2)^3.
G.f.: Sum_{k>=1} J_2(k)*x^k/(1 - x^(2*k)), where J_2() is the Jordan function (A007434).
E.g.f.: x*((4 + 3*x)*cosh(x) + (3 + 4*x)*sinh(x))/4.
Dirichlet g.f.: zeta(s-2)*(1 - 1/2^s).
a(n) = (7 - (-1)^n)*n^2/8.
a(n) = Sum_{d|n, n/d odd} J_2(d).
a(2*k+1) = A016754(k), a(2*k) = A033428(k).
Sum_{n>=1} 1/a(n) = 13*Pi^2/72 = 1.7820119057522453061...
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi^2/72 = 0.68538919452009434853...
Multiplicative with a(2^e) = 3*2^(2*e-2), and a(p^e) = p^(2*e) for odd primes p. - Amiram Eldar, Oct 26 2020
For n >= 1, n*a(n) = A309337(n) = Sum_{d divides n} (-1)^(d+1) * J(3, n/d), where the Jordan totient function J_3(n) = A059376. - Peter Bala, Jan 21 2024

A064763 a(n) = 28*n^2.

Original entry on oeis.org

0, 28, 112, 252, 448, 700, 1008, 1372, 1792, 2268, 2800, 3388, 4032, 4732, 5488, 6300, 7168, 8092, 9072, 10108, 11200, 12348, 13552, 14812, 16128, 17500, 18928, 20412, 21952, 23548, 25200, 26908, 28672, 30492, 32368, 34300, 36288, 38332
Offset: 0

Views

Author

Roberto E. Martinez II, Oct 18 2001

Keywords

Comments

Number of edges in a complete 8-partite graph of order 8n, K_n,n,n,n,n,n,n,n.
Sequence found by reading the line from 0, in the direction 0, 28, ..., in the square spiral whose vertices are the generalized 16-gonal numbers. - Omar E. Pol, Jul 03 2014

Crossrefs

Similar sequences are listed in A244630.

Programs

Formula

a(n) = 56*n + a(n-1) - 28 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
a(n) = 28*A000290(n) = 14*A001105(n) = 7*A016742(n) = 4*A033582(n) = 2*A144555(n). - Omar E. Pol, Jul 03 2014
From Vincenzo Librandi, Mar 30 2015: (Start)
G.f.: 28*x*(1+x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = t(8*n) - 8*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(8*n) - 8*A000217(n). - Bruno Berselli, Aug 31 2017
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 28*x*(1 + x)*exp(x).
a(n) = n*A135628(n). (End)

A256320 Number of partitions of 4n into exactly 3 parts.

Original entry on oeis.org

0, 1, 5, 12, 21, 33, 48, 65, 85, 108, 133, 161, 192, 225, 261, 300, 341, 385, 432, 481, 533, 588, 645, 705, 768, 833, 901, 972, 1045, 1121, 1200, 1281, 1365, 1452, 1541, 1633, 1728, 1825, 1925, 2028, 2133, 2241, 2352, 2465, 2581, 2700, 2821, 2945, 3072, 3201
Offset: 0

Views

Author

Colin Barker, Mar 24 2015

Keywords

Examples

			For n=2 the 5 partitions of 4*2 = 8 are [1,1,6], [1,2,5], [1,3,4], [2,2,4] and [2,3,3].
		

Crossrefs

Cf. A033428 (6n), A256321 (5n), A256322 (7n).
Cf. A184637.

Programs

  • Mathematica
    Length /@ (Total /@ IntegerPartitions[4 #, {3}] & /@ Range[0, 49]) (* Michael De Vlieger, Mar 24 2015 *)
    CoefficientList[Series[-x (x + 1)^3/((x - 1)^3 (x^2 + x + 1)), {x, 0, 49}], x] (* or *)
    Table[2 (6 n^2 + Cos[(2 Pi n)/3] - 1)/9, {n, 0, 49}] (* Michael De Vlieger, Jun 06 2016 *)
  • PARI
    concat(0, vector(40, n, k=0; forpart(p=4*n, k++, , [3,3]); k))
    
  • PARI
    concat(0, Vec(-x*(x+1)^3/((x-1)^3*(x^2+x+1)) + O(x^100)))

Formula

a(n) = A184637(n) for n > 2.
a(n) = 2*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+a(n-5) for n>4.
G.f.: -x*(x+1)^3 / ((x-1)^3*(x^2+x+1)).
a(n) = 2*(6*n^2+cos((2*Pi*n)/3)-1)/9. - Colin Barker, Jun 06 2016
Previous Showing 61-70 of 106 results. Next