cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 68 results. Next

A033990 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the negative y-axis.

Original entry on oeis.org

0, 1, 1, 8, 3, 7, 6, 2, 1, 5, 1, 1, 6, 2, 2, 1, 3, 4, 0, 4, 5, 3, 6, 7, 0, 8, 9, 1, 4, 6, 1, 2, 7, 1, 1, 4, 4, 8, 1, 7, 4, 7, 2, 0, 8, 8, 2, 4, 4, 1, 2, 8, 4, 6, 3, 2, 7, 3, 3, 7, 3, 2, 4, 1, 2, 3, 4, 7, 5, 6, 5, 2, 0, 1, 5, 8, 9, 8, 6, 4, 1, 7, 6, 1, 7, 8, 7, 7, 5, 1, 8, 4, 7, 6, 9, 2, 2, 3, 9, 0, 1, 0, 1, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Consider array of digits 0_(1)23456789(1)0111213141516171(8)1920212223...; in this array add to n-th pointer 8*n+1 to get next pointer. E.g., n=1 so n+(8*1+1)=10 -> n=10 so n+(8*2+1)=27 -> n=27 so ... etc. - comment from Patrick De Geest.

Examples

			The spiral begins
                 2---3---2---4---2---5---2
                 |                       |
                 2   1---3---1---4---1   6
                 |   |               |   |
                 2   2   4---5---6   5   2
                 |   |   |       |   |   |
                 1   1   3   0   7   1   7
                 |   |   |   |   |   |   |
                 2   1   2---1   8   6   2
                 |   |           |   |   |
                 0   1---0---1---9   1   8
                 |                   |   |
                 2---9---1---8---1---7   2
                                         |
                             3---0---3---9
.
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it. Then the sequence is obtained by reading downwards, starting from the initial 0. - _Andrew Woods_, May 20 2012
		

Crossrefs

Sequences based on the same spiral: A033953, A033988, A033989. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996, A033988.

Programs

Formula

a(n) = A033307(4*n^2-3*n-1) for n > 0. - Andrew Woods, May 20 2012

Extensions

More terms from Patrick De Geest, Oct 15 1999
Edited by Charles R Greathouse IV, Nov 01 2009

A033953 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the positive x-axis.

Original entry on oeis.org

0, 7, 1, 7, 4, 2, 8, 1, 1, 3, 1, 2, 0, 2, 3, 1, 3, 4, 6, 5, 5, 5, 7, 7, 8, 8, 9, 6, 8, 1, 1, 1, 2, 3, 1, 8, 0, 6, 1, 7, 0, 9, 2, 8, 4, 3, 2, 1, 1, 7, 2, 6, 2, 1, 3, 3, 5, 5, 3, 2, 2, 0, 4, 3, 2, 5, 4, 6, 5, 0, 5, 1, 1, 6, 5, 8, 1, 2, 6, 7, 3, 8, 7, 8, 9, 5, 7, 1, 8, 2, 8, 6, 1, 9, 9, 3, 6, 7, 9, 0, 1, 4, 6, 1, 0
Offset: 0

Views

Author

Keywords

Examples

			  2---3---2---4---2---5---2
  |                       |
  2   1---3---1---4---1   6
  |   |               |   |
  2   2   4---5---6   5   2
  |   |   |       |   |   |
  1   1   3   0   7   1   7
  |   |   |   |   |   |   |
  2   1   2---1   8   6   2
  |   |           |   |   |
  0   1---0---1---9   1   8
  |                   |   |
  2---9---1---8---1---7   2
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it. Then the sequence is obtained by reading rightwards, starting from the initial 0. - _Andrew Woods_, May 20 2012
		

Crossrefs

Sequences based on the same spiral: A033988, A033989, A033990. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996, A033988.

Programs

Formula

a(n) = A033307(4*n^2 + 3*n - 1) for n > 0. - Andrew Woods, May 20 2012

Extensions

More terms from Andrew J. Gacek (andrew(AT)dgi.net)
Edited by Charles R Greathouse IV, Nov 01 2009

A028994 Even 10-gonal (or decagonal) numbers.

Original entry on oeis.org

0, 10, 52, 126, 232, 370, 540, 742, 976, 1242, 1540, 1870, 2232, 2626, 3052, 3510, 4000, 4522, 5076, 5662, 6280, 6930, 7612, 8326, 9072, 9850, 10660, 11502, 12376, 13282, 14220, 15190, 16192, 17226, 18292, 19390, 20520, 21682, 22876, 24102, 25360, 26650, 27972
Offset: 0

Views

Author

Keywords

Comments

a(n) (for n >= 1) is also the Wiener index of the windmill graph D(5, n). The windmill graph D(m, n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e. a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. The Wiener index of D(m, n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(3, n), D(4, n), and D(6, n) see A033991, A152743, and A180577, respectively. - Emeric Deutsch, Sep 21 2010

Crossrefs

Programs

Formula

a(n) = 2*n*(8*n - 3). - Omar E. Pol, Aug 19 2011
G.f.: -2*x*(11*x+5)/(x-1)^3. - Colin Barker, Nov 18 2012
Sum_{n>=1} 1/a(n) = (8*log(2) - (sqrt(2)-1)*Pi - 2*sqrt(2)*log(1+sqrt(2)))/12. - Amiram Eldar, Feb 27 2022
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: 2*x*(5 + 8*x)*exp(x).
a(n) = 2*A139273(n) = A001107(2*n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A113688 Isolated semiprimes in the semiprime square spiral.

Original entry on oeis.org

65, 74, 249, 295, 309, 355, 422, 511, 545, 667, 669, 758, 926, 943, 979, 998, 1099, 1167, 1186, 1322, 1457, 1469, 1561, 1585, 1658, 1711, 1774, 1779, 1835, 1891, 1959, 1961, 1963, 2021, 2038, 2066, 2155, 2186, 2191, 2206, 2271, 2329, 2342
Offset: 1

Views

Author

Jonathan Vos Post, Nov 05 2005

Keywords

Comments

Write the integers 1, 2, 3, 4, ... in a counterclockwise square spiral. Analogous to Ulam's marking the primes in the spiral and discovering unexpectedly many connected diagonals, we construct a semiprime spiral by marking the semiprimes (A001358). Each integer has 8 adjacent integers in the spiral, horizontally, vertically and diagonally. Curious extended clumps coagulate, slightly denser towards the origin, of semiprimes connected by adjacency. This sequence lists the isolated semiprimes in the semiprime spiral, namely those semiprimes none of whose adjacent integers in the spiral are semiprimes. A113689 gives an enumeration of the number of semiprimes in clumps of size > 1 through n^2.
The squares of twin primes occupy adjacent points along the southeast diagonal, so none are isolated. Thus the only isolated semiprimes in the spiral that are squares are the squares of "isolated primes" (A007510). The first square in this sequence is a(1473) = 66049 = 257^2. - Jon E. Schoenfield, Aug 12 2018

Examples

			Spiral example:
.
  17--16--15--14--13
   |               |
  18   5---4---3  12
   |   |       |   |
  19   6   1---2  11
   |   |           |
  20   7---8---9--10
   |
  21--22--23--24--25
.
From _Michael De Vlieger_, Dec 22 2015: (Start)
Spiral including n <= 121 showing only semiprimes; the isolated semiprimes appear in parentheses:
.
    .---.---.---.---.---.--95--94--93---.--91
    |                                       |
    . (65)--.---.--62---.---.---.--58--57   .
    |   |                               |   |
    .   .   .---.--35--34--33---.---.   .   .
    |   |   |                       |   |   |
    .   .  38   .---.--15--14---.   .  55   .
    |   |   |   |               |   |   |   |
    .   .  39   .   .---4---.   .   .   .  87
    |   |   |   |   |       |   |   |   |   |
  106  69   .   .   6   .---.   .   .   .  86
    |   |   |   |   |           |   |   |   |
    .   .   .   .   .---.---9--10   .   .  85
    |   |   |   |                   |   |   |
    .   .   .  21--22---.---.--25--26  51   .
    |   |   |                           |   |
    .   .   .---.---.--46---.---.--49---.   .
    |   |                                   |
    .   .-(74)--.---.--77---.---.---.---.--82
    |
  111---.---.---.-115---.---.-118-119---.-121
.
(End)
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.

Crossrefs

Cf. A115258 (isolated primes in Ulam's lattice).

Programs

  • Mathematica
    spiral[n_] := Block[{o = 2 n - 1, t, w}, t = Table[0, {o}, {o}]; t = ReplacePart[t, {n, n} -> 1]; Do[w = Partition[Range[(2 (# - 1) - 1)^2 + 1, (2 # - 1)^2], 2 (# - 1)] &@ k; Do[t = ReplacePart[t, {(n + k) - (j + 1), n + (k - 1)} -> #[[1, j]]]; t = ReplacePart[t, {n - (k - 1), (n + k) - (j + 1)} -> #[[2, j]]]; t = ReplacePart[t, {(n - k) + (j + 1), n - (k - 1)} -> #[[3, j]]]; t = ReplacePart[t, {n + (k - 1), (n - k) + (j + 1)} -> #[[4, j]]], {j, 2 (k - 1)}] &@ w, {k, 2, n}]; t]; f[w_] := Block[{d = Dimensions@ w, t, g}, t = Reap[Do[Sow@ Take[#[[k]], {2, First@ d - 1}], {k, 2, Last@ d - 1}]][[-1, 1]] &@ w; g[n_] := If[n != 0, Total@ Join[Take[w[[Last@ # - 1]], {First@ # - 1, First@ # + 1}], {First@ #, Last@ #} &@ Take[w[[Last@ #]], {First@ # - 1, First@ # + 1}], Take[w[[Last@ # + 1]], {First@ # - 1, First@# + 1}]] &@(Reverse@ First@ Position[t, n] + {1, 1}) == 0, False]; Select[Union@ Flatten@ t, g@ # &]]; t = spiral@ 26 /. n_ /; PrimeOmega@ n != 2 -> 0; f@ t (* Michael De Vlieger, Dec 21 2015, Version 10 *)

Extensions

Corrected and extended by Alois P. Heinz, Jan 02 2011

A014848 a(n) = n^2 - floor( n/2 ).

Original entry on oeis.org

0, 1, 3, 8, 14, 23, 33, 46, 60, 77, 95, 116, 138, 163, 189, 218, 248, 281, 315, 352, 390, 431, 473, 518, 564, 613, 663, 716, 770, 827, 885, 946, 1008, 1073, 1139, 1208, 1278, 1351, 1425, 1502, 1580, 1661, 1743, 1828, 1914, 2003, 2093, 2186, 2280, 2377, 2475
Offset: 0

Views

Author

Keywords

Comments

Quasipolynomial of order 2. - Charles R Greathouse IV, Jan 19 2012
The binomial transform is 0, 1, 5, 20,... which is A084850 with offset 1. - R. J. Mathar, Nov 26 2014

Crossrefs

Cf. A033951, A033991, A042963 (first differences), A084850.

Programs

Formula

a(2*n) = A033991(n).
a(2*n+1) = A033951(n).
G.f.: x*(1+x+2*x^2)/((1-x)^2*(1-x^2)).
a(n) = (2*n*(2*n-1) + 1 - (-1)^n)/4. - Bruno Berselli, Feb 17 2011
a(n) = round(n/(exp(1/n) - 1)), n > 0. - Richard R. Forberg, Nov 14 2014
E.g.f.: (1/4)*((1 + 2*x + 4*x^2)*exp(x) - exp(-x)). - G. C. Greubel, Mar 14 2024

A113689 Number of semiprimes in clumps of size > 1 through n^2 in the semiprime spiral.

Original entry on oeis.org

0, 0, 2, 6, 9, 13, 17, 21, 23, 31, 37, 45, 54, 59, 72, 77, 83, 93, 104, 116, 125, 140, 150, 164, 180, 188, 203, 219, 236, 255, 272, 287, 301, 317, 334, 354, 378, 403, 419, 430, 450, 475, 498, 521, 542, 560, 588, 608, 626, 652, 677, 698
Offset: 1

Views

Author

Jonathan Vos Post, Nov 05 2005

Keywords

Comments

Write the integers 1, 2, 3, 4, ... in a counterclockwise square spiral. Analogous to Ulam coloring in the primes in the spiral and discovering unexpectedly many connected diagonals, we construct a semiprime spiral by coloring in all semiprimes (A001358). Each integer has 8 adjacent integers in the spiral, horizontally, vertically and diagonally. Curious extended clumps coagulate, slightly denser towards the origin, of semiprimes connected by adjacency. This sequence, A113689, gives an enumeration of the number of semiprimes in clumps of size > 1 through n^2, not looking past the square boundary. A113688 gives isolated semiprimes in the semiprime spiral, namely those semiprimes none of whose adjacent integers in the spiral are semiprimes.

Examples

			a(3) = 2 because there is one visible clump through 3^2 = 9, {4,6}, which two semiprimes are diagonally connected.
a(4) = 6 because there are 6 semiprimes in the 2 visible clumps through 4^2 = 16, {4, 6, 14, 15}, {9, 10}.
a(5) = 9 because there are 9 semiprimes in the 3 visible clumps through 5^2 = 25, {4, 6, 14, 15}, {9, 10, 25}, {21, 22}.
......................
... 17 16 15 14 13 ...
... 18  5  4  3 12 ...
... 19  6  1  2 11 ...
... 20  7  8  9 10 ...
... 21 22 23 24 25 ...
......................
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.

Crossrefs

Extensions

Corrected and extended by Alois P. Heinz, Jan 02 2011

A180577 The Wiener index of the windmill graph D(6,n). The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs).

Original entry on oeis.org

15, 80, 195, 360, 575, 840, 1155, 1520, 1935, 2400, 2915, 3480, 4095, 4760, 5475, 6240, 7055, 7920, 8835, 9800, 10815, 11880, 12995, 14160, 15375, 16640, 17955, 19320, 20735, 22200, 23715, 25280, 26895, 28560, 30275, 32040, 33855, 35720, 37635, 39600, 41615, 43680, 45795
Offset: 1

Views

Author

Emeric Deutsch, Sep 21 2010

Keywords

Comments

The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph.
The Wiener polynomial of D(m,n) is (1/2)n(m-1)t[(m-1)(n-1)t+m].
The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1].
For the Wiener indices of D(3,n), D(4,n), and D(5,n) see A033991, A152743, and A028994, respectively.

Crossrefs

Programs

Formula

a(n) = 5*n*(5*n-2).
G.f.: -5*x*(7*x+3)/(x-1)^3. - Colin Barker, Oct 30 2012
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: 5*exp(x)*x*(3 + 5*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

More terms from Elmo R. Oliveira, Apr 03 2025

A193866 Even pentagonal numbers divided by 2.

Original entry on oeis.org

0, 6, 11, 35, 46, 88, 105, 165, 188, 266, 295, 391, 426, 540, 581, 713, 760, 910, 963, 1131, 1190, 1376, 1441, 1645, 1716, 1938, 2015, 2255, 2338, 2596, 2685, 2961, 3056, 3350, 3451, 3763, 3870, 4200, 4313, 4661, 4780, 5146, 5271, 5655, 5786, 6188
Offset: 0

Views

Author

Omar E. Pol, Aug 18 2011

Keywords

Crossrefs

Programs

  • Magma
    [1/16*(1-3*(-1)^n+12*n)*(1-(-1)^n+4*n): n in [0..60]]; // Vincenzo Librandi, Jun 20 2015
  • Mathematica
    Table[(1/16 (1 - 3 (-1)^n + 12 n) (1 - (-1)^n + 4 n)), {n, 0, 50}] (* Vincenzo Librandi, Jun 20 2015 *)
    Select[PolygonalNumber[5,Range[0,100]],EvenQ]/2 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 13 2018 *)
  • PARI
    a(n)=3*n^2+if(n%2,5*n+1,-n)/2 \\ Charles R Greathouse IV, Aug 18 2011
    

Formula

a(n) = 1/16*(1-3*(-1)^n+12*n)*(1-(-1)^n+4*n).
a(n) = A014633(n)/2.
a(0)=0, a(1)=6, a(2)=11, a(3)=35, a(4)=46, a(n)=a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). G.f.: x*(6+5*x+12*x^2+x^3)/(1-x-2*x^2+2*x^3+x^4-x^5). [Colin Barker, Jan 25 2012]

A342133 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - 2*k*x + k*x^2).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 14, 4, 0, 1, 8, 33, 48, 5, 0, 1, 10, 60, 180, 164, 6, 0, 1, 12, 95, 448, 981, 560, 7, 0, 1, 14, 138, 900, 3344, 5346, 1912, 8, 0, 1, 16, 189, 1584, 8525, 24960, 29133, 6528, 9, 0, 1, 18, 248, 2548, 18180, 80750, 186304, 158760, 22288, 10, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,     1,     1, ...
  0, 2,   4,    6,     8,    10, ...
  0, 3,  14,   33,    60,    95, ...
  0, 4,  48,  180,   448,   900, ...
  0, 5, 164,  981,  3344,  8525, ...
  0, 6, 560, 5346, 24960, 80750, ...
		

Crossrefs

Columns 0..5 give A000007, A000027(n+1), A007070, A138395, A099156(n+1), A190987(n+1).
Rows 0..2 give A000012, A005843, A033991.
Main diagonal gives (-1) * A109520(n+1).

Programs

  • Maple
    T:= (n, k)-> (<<0|1>, <-k|2*k>>^(n+1))[1, 2]:
    seq(seq(T(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 01 2021
  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, (2*k)^j] * (-2)^(j - n) * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    T(n, k) = sum(j=0, n\2, (2*k)^(n-j)*(-2)^(-j)*binomial(n-j, j));
    
  • PARI
    T(n, k) = sum(j=0, n, (2*k)^j*(-2)^(j-n)*binomial(j, n-j));
    
  • PARI
    T(n, k) = round(sqrt(k)^n*polchebyshev(n, 2, sqrt(k)));

Formula

T(0,k) = 1, T(1,k) = 2*k and T(n,k) = k*(2*T(n-1,k) - T(n-2,k)) for n > 1.
T(n,k) = Sum_{j=0..floor(n/2)} (2*k)^(n-j) * (-1/2)^j * binomial(n-j,j) = Sum_{j=0..n} (2*k)^j * (-1/2)^(n-j) * binomial(j,n-j).
T(n,k) = sqrt(k)^n * U(n, sqrt(k)) where U(n, x) is a Chebyshev polynomial of the second kind.

A185950 a(n) = 4*n^2 - n - 1.

Original entry on oeis.org

-1, 2, 13, 32, 59, 94, 137, 188, 247, 314, 389, 472, 563, 662, 769, 884, 1007, 1138, 1277, 1424, 1579, 1742, 1913, 2092, 2279, 2474, 2677, 2888, 3107, 3334, 3569, 3812, 4063, 4322, 4589, 4864, 5147, 5438, 5737, 6044, 6359, 6682, 7013, 7352, 7699, 8054, 8417, 8788, 9167, 9554, 9949, 10352, 10763, 11182, 11609
Offset: 0

Views

Author

Paul Curtz, Feb 07 2011

Keywords

Comments

Write the sequence A023443 in a clockwise spiral. a(n) is on the y-axis.
a(n) mod 9 = period 9: repeat [8,2,4,5,5,4,2,8,4] = A182868(n+2) mod 9.

Examples

			  11--12--13--14--15
   |               |
  10   1---2---3  16
   |   |       |   |
   9   0-(-1)  4  17
   |           |   |
   8---7---6---5  18
		

Crossrefs

Programs

Formula

a(n) = A176126(4*n-1) = A054556(n+1) - 2 = A033991(n) - 1.
a(n) = a(n-1) + 8*n - 5.
a(n) = 2*a(n-1) - a(n-2) + 8.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: ( 1-5*x-4*x^2 ) / (x-1)^3. - R. J. Mathar, Feb 10 2011
E.g.f.: (4*x^2 + 3*x - 1)*exp(x). - G. C. Greubel, Jul 23 2017
Previous Showing 41-50 of 68 results. Next