cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 145 results. Next

A326774 For any number m, let m* be the bi-infinite string obtained by repetition of the binary representation of m; this sequence lists the numbers n such that for any k < n, n* does not equal k* up to a shift.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 11, 16, 17, 18, 19, 21, 23, 32, 33, 34, 35, 37, 38, 39, 43, 47, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 85, 87, 91, 95, 128, 129, 130, 131, 132, 133, 134, 135, 137, 138, 139, 140, 141, 142, 143, 146, 147, 149, 150, 151, 154
Offset: 0

Views

Author

Rémy Sigrist, Jul 27 2019

Keywords

Comments

This sequence contains every power of 2.
No term belongs to A121016.
Every terms belongs to A004761.
For any k > 0, there are A001037(k) terms with binary length k.
From Gus Wiseman, Apr 19 2020: (Start)
Also numbers k such that the k-th composition in standard order (row k of A066099) is a co-Lyndon word (regular Lyndon words being A275692). For example, the sequence of all co-Lyndon words begins:
0: () 37: (3,2,1) 79: (3,1,1,1,1)
1: (1) 38: (3,1,2) 85: (2,2,2,1)
2: (2) 39: (3,1,1,1) 87: (2,2,1,1,1)
4: (3) 43: (2,2,1,1) 91: (2,1,2,1,1)
5: (2,1) 47: (2,1,1,1,1) 95: (2,1,1,1,1,1)
8: (4) 64: (7) 128: (8)
9: (3,1) 65: (6,1) 129: (7,1)
11: (2,1,1) 66: (5,2) 130: (6,2)
16: (5) 67: (5,1,1) 131: (6,1,1)
17: (4,1) 68: (4,3) 132: (5,3)
18: (3,2) 69: (4,2,1) 133: (5,2,1)
19: (3,1,1) 70: (4,1,2) 134: (5,1,2)
21: (2,2,1) 71: (4,1,1,1) 135: (5,1,1,1)
23: (2,1,1,1) 73: (3,3,1) 137: (4,3,1)
32: (6) 74: (3,2,2) 138: (4,2,2)
33: (5,1) 75: (3,2,1,1) 139: (4,2,1,1)
34: (4,2) 77: (3,1,2,1) 140: (4,1,3)
35: (4,1,1) 78: (3,1,1,2) 141: (4,1,2,1)
(End)

Examples

			3* = ...11... equals 1* = ...1..., so 3 is not a term.
6* = ...110... equals up to a shift 5* = ...101..., so 6 is not a term.
11* = ...1011... only equals up to a shift 13* = ...1101... and 14* = ...1110..., so 11 is a term.
		

Crossrefs

Necklace compositions are counted by A008965.
Lyndon compositions are counted by A059966.
Length of Lyndon factorization of binary expansion is A211100.
Numbers whose reversed binary expansion is a necklace are A328595.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of Lyndon factorization of reversed binary expansion is A329313.
Length of co-Lyndon factorization of reversed binary expansion is A329326.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774 (this sequence).
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Co-Lyndon factorizations are counted by A333765.
- Lyndon factorizations are counted by A333940.
- Reversed necklaces are A333943.
- Length of co-Lyndon factorization is A334029.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    colynQ[q_]:=Length[q]==0||Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And];
    Select[Range[0,100],colynQ[stc[#]]&] (* Gus Wiseman, Apr 19 2020 *)
  • PARI
    See Links section.

A098407 Number of different hierarchical orderings that can be formed from n unlabeled elements with no repetition of subhierarchies.

Original entry on oeis.org

1, 1, 2, 6, 13, 33, 78, 186, 436, 1028, 2394, 5566, 12877, 29689, 68198, 156194, 356599, 811959, 1843956, 4177436, 9442166, 21295934, 47932572, 107677140, 241443980, 540441068, 1207689636, 2694452060, 6002389882, 13351958546, 29659179804, 65794744420, 145768641091
Offset: 0

Views

Author

Thomas Wieder, Sep 07 2004; corrected Sep 09 2004

Keywords

Comments

a(n) is the number of finite sets of compositions with total sum n. The case of constant sums is A358904, cf. A074854. The case of distinct sums is A304961, ordered A336127. The ordered version (sequences of distinct compositions) is A358907. - Gus Wiseman, Dec 12 2022

Examples

			Let a pair of parentheses () indicate a subhierarchy and let square brackets [] denote a set of subhierarchies, that is, a hierarchy (also called a society). Let the ranks be ordered from left to right and separated by a colon; e.g., (2:3) is a subhierarchy with three elements ("individuals") on top and two elements on the bottom rank.
Then the hierarchical ordering for n = 4 is composed of the following sets: [(1:1),(2)]; [(1),(3)]; [(1),(1:1:1)]; [(1),(2:1)]; [(1),(1:2)]; [(4)]; [(2:2)]; [(1:3)]; [(3:1)]; [(1:1:2)]; [(1:2:1)]; [(2:1:1)]; [(1:1:1:1)]; thus a(4) = 13.
For example, the following hierarchy is not allowed: [(1),(1),(1),(1)] because of the repetition of (1).
		

Crossrefs

A034691 counts multisets of compositions, ordered A133494.
A261049 counts sets of partitions, ordered A358906.

Programs

  • Maple
    main := proc(n::integer) local a, ListOfPartitions, NumberOfPartitions, APartition, APart, ASet, MultipliticityOfAPart, ndxprttn, ndxprt, Term, Produkt; with(combinat): with(ListTools): a := 0; ListOfPartitions := partition(n); NumberOfPartitions := nops(ListOfPartitions); for ndxprttn from 1 to NumberOfPartitions do APartition := ListOfPartitions[ndxprttn]; ASet := convert(APartition,set); Produkt := 1; for ndxprt from 1 to nops(ASet) do APart := op(ndxprt,ASet); MultipliticityOfAPart := Occurrences(APart, APartition); Term := 2^(APart-1); Term := binomial(Term,MultipliticityOfAPart); Produkt := Produkt * Term; # End of do-loop *** ndxprt ***. end do; a := a + Produkt; # End of do-loop *** ndxprttn ***. end do; print("n, a(n):",n,a); end proc;
    PartitionList := proc (n, k) # Authors: # Herbert S. Wilf and Joanna Nordlicht, # Source: # Lecture Notes "East Side West Side,..." # University of Pennsylvania, USA, 2002. # Available from http://www.cis.upenn.edu/~wilf/lecnotes.html # Berechnet die Partitionen von n mit k Summanden. local East, West; if n < 1 or k < 1 or n < k then RETURN([]) elif n = 1 then RETURN([[1]]) else if n < 2 or k < 2 or n < k then West := [] else West := map(proc (x) options operator, arrow; [op(x), 1] end proc, PartitionList(n-1, k-1)) end if; if k <= n-k then East := map(proc(y) options operator, arrow; map(proc (x) options operator, arrow; x+1 end proc, y) end proc, PartitionList(n-k, k)) else East := [] end if; RETURN([op(West), op(East)]) end if end proc;
    # second Maple program:
    series(exp(add((-1)^(j-1)/j*z^j/(1-2*z^j), j=1..40)), z, 40); # Cf. A102866; Vladeta Jovovic, Feb 19 2008
    # alternative Maple program:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n>1, 0, 1),
          add(b(n-i*j, i-1)*binomial(2^(i-1), j), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, May 22 2018
  • Mathematica
    terms = 32; CoefficientList[Product[(1 + x^k)^(2^(k-1)), {k, 1, terms+1}] + O[x]^(terms+1), x] // Rest (* Jean-François Alcover, Nov 10 2017, after Vladeta Jovovic *)
    nmax = 40; CoefficientList[Series[Exp[Sum[-(-1)^k*x^k/(k*(1 - 2 x^k)), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 08 2018 *)

Formula

a(n) = Sum_{ partitions n = s_1 + ... + s_n } Product_{ Set{s_i} } C(2^(s_i - 1), m(s_i)), where the sum runs over all partitions of n, the product runs over the set of parts of a given partition, s_i is the i-th part in the set of parts, C(k, l) denotes the binomial coefficient and m(s_i) is the multiplicity of part s_i in the given partition.
G.f.: Product_{k>=1} (1+x^k)^(2^(k-1)). - Vladeta Jovovic, Feb 19 2008
a(n) ~ 2^n * exp(sqrt(2*n) - 1/4 + c) / (sqrt(2*Pi) * 2^(3/4) * n^(3/4)), where c = Sum_{k>=2} -(-1)^k / (k*(2^k-2)) = -0.207530918644117743551169251314627032059... - Vaclav Kotesovec, Jun 08 2018
Weigh transform of A011782. - Alois P. Heinz, Jun 25 2018

Extensions

More terms from Alois P. Heinz, Apr 21 2012
a(0)=1 prepended by Alois P. Heinz, May 22 2018

A292884 Number of ways to shuffle together a multiset of compositions to form a composition of n.

Original entry on oeis.org

1, 3, 8, 25, 76, 248, 806, 2714, 9205, 31846, 111185, 393224
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2017

Keywords

Examples

			The a(3)=8 shuffles are:
(111)<=((111)), (111)<=((1)(11)), (111)<=((1)(1)(1)),
(12)<=((12)), (12)<=((1)(2)),
(21)<=((21)), (21)<=((1)(2)),
(3)<=((3)).
		

Crossrefs

Programs

  • Mathematica
    nn=10;
    comps[0]:={{}};comps[n_]:=Join@@Table[Prepend[#,i]&/@comps[n-i],{i,n}];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
    Table[Total[Length/@dealings/@comps[n]],{n,nn}]

Extensions

a(12) from Robert Price, Sep 16 2018

A317532 Regular triangle read by rows: T(n,k) is the number of multiset partitions of normal multisets of size n into k blocks, where a multiset is normal if it spans an initial interval of positive integers.

Original entry on oeis.org

1, 2, 2, 4, 8, 4, 8, 34, 26, 8, 16, 124, 168, 76, 16, 32, 448, 962, 674, 208, 32, 64, 1568, 5224, 5344, 2392, 544, 64, 128, 5448, 27336, 39834, 24578, 7816, 1376, 128, 256, 18768, 139712, 283864, 236192, 99832, 24048, 3392, 256, 512, 64448, 702496, 1960320, 2161602, 1186866, 370976, 70656, 8192, 512
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Examples

			The T(3,2) = 8 multiset partitions:
  {{1},{1,1}}
  {{1},{2,2}}
  {{2},{1,2}}
  {{1},{1,2}}
  {{2},{1,1}}
  {{1},{2,3}}
  {{2},{1,3}}
  {{3},{1,2}}
Triangle begins:
    1
    2    2
    4    8    4
    8   34   26    8
   16  124  168   76   16
   32  448  962  674  208   32
  ...
		

Crossrefs

Row sums are A255906.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Length[Select[Join@@mps/@allnorm[n],Length[#]==k&]],{n,7},{k,n}]
  • PARI
    \\ here B(n,k) is A239473(n,k).
    B(n,k)={sum(r=k, n, binomial(r, k)*(-1)^(r-k))}
    Row(n)={Vecrev(sum(j=1, n, B(n,j)*polcoef(1/prod(k=1, n, (1 - x^k*y + O(x*x^n))^binomial(k+j-1,j-1)), n))/y)}
    { for(n=1, 10, print(Row(n))) } \\ Andrew Howroyd, Dec 31 2019

Extensions

Terms a(29) and beyond from Andrew Howroyd, Dec 31 2019

A335515 Number of patterns of length n matching the pattern (1,2,3).

Original entry on oeis.org

0, 0, 0, 1, 19, 257, 3167, 38909, 498235, 6811453, 100623211, 1612937661, 28033056683, 526501880989, 10639153638795, 230269650097469, 5315570416909995, 130370239796988957, 3385531348514480651, 92801566389186549245, 2677687663571344712043, 81124824154544921317597
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 19 patterns:
  (1,2,3)  (1,1,2,3)
           (1,2,1,3)
           (1,2,2,3)
           (1,2,3,1)
           (1,2,3,2)
           (1,2,3,3)
           (1,2,3,4)
           (1,2,4,3)
           (1,3,2,3)
           (1,3,2,4)
           (1,3,4,2)
           (1,4,2,3)
           (2,1,2,3)
           (2,1,3,4)
           (2,3,1,4)
           (2,3,4,1)
           (3,1,2,3)
           (3,1,2,4)
           (4,1,2,3)
		

Crossrefs

The complement A226316 is the avoiding version.
Compositions matching this pattern are counted by A335514 and ranked by A335479.
Permutations of prime indices matching this pattern are counted by A335520.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Permutations matching (1,2,3) are counted by A056986.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
    				
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - 1/2 - 1/(1+sqrt(1-8*x+8*x^2 + O(x*x^n))), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) - A226316(n). - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024

A034899 Euler transform of powers of 2 [ 2,4,8,16,... ].

Original entry on oeis.org

1, 2, 7, 20, 59, 162, 449, 1200, 3194, 8348, 21646, 55480, 141152, 356056, 892284, 2221208, 5497945, 13533858, 33151571, 80826748, 196219393, 474425518, 1142758067, 2742784304, 6561052331, 15645062126, 37194451937, 88174252924, 208463595471, 491585775018
Offset: 0

Views

Author

Keywords

Examples

			From _Geoffrey Critzer_, Mar 07 2012: (Start)
Per comment in A102866, a(n) is also the number of multisets of binary words of total length n.
a(2) = 7 because the multisets are {a,a}, {b,b}, {a,b}, {aa}, {ab}, {ba}, {bb};
a(3) = 20 because the multisets are {a,a,a}, {b,b,b}, {a,a,b}, {a,b,b}, {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}, {aaa}, {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb};
where the words within each multiset are separated by commas. (End)
		

Crossrefs

Cf. A034691, the Euler transform of 1, 2, 4, 8, 16, 32, 64, ...
Column k=2 of A144074.
Row sums of A055375 and of A209406.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^k)^(2^k): k in [1..m]]) )); // G. C. Greubel, Nov 09 2018 ~
  • Maple
    series(1/product((1-x^(n))^(2^(n)),n=1..20),x=0,12); (Wieder)
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add(add(d*2^d, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 02 2011
  • Mathematica
    nn = 20; p = Product[1/(1 - x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] (* Geoffrey Critzer, Mar 07 2012 *)
  • PARI
    m=50; x='x+O('x^m); Vec(prod(k=1,m,1/(1-x^k)^(2^k))) \\ G. C. Greubel, Nov 09 2018
    

Formula

G.f.: 1/Product_{n>0} (1-x^n)^(2^n). - Thomas Wieder, Mar 06 2005
a(n) ~ c^2 * 2^(n-1) * exp(2*sqrt(n) - 1/2) / (sqrt(Pi) * n^(3/4)), where c = A247003 = exp( Sum_{k>=2} 1/(k*(2^k-2)) ) = 1.3976490050836502... . - Vaclav Kotesovec, Mar 09 2015
G.f.: exp(2*Sum_{k>=1} x^k/(k*(1 - 2*x^k))). - Ilya Gutkovskiy, Nov 09 2018

Extensions

More terms from Thomas Wieder, Mar 06 2005

A083355 Number of preferential arrangements for the set partitions of the n-set [1,2,3,...,n].

Original entry on oeis.org

1, 1, 4, 23, 175, 1662, 18937, 251729, 3824282, 65361237, 1241218963, 25928015368, 590852003947, 14586471744301, 387798817072596, 11046531316503163, 335640299372252595, 10835556229612637150, 370383732831919278037, 13363914680277923634517
Offset: 0

Views

Author

Thomas Wieder, Jun 11 2003, May 07 2008

Keywords

Comments

Labeled analog of A055887. See combstruct commands for more precise definition.
Stirling transform of A000670(n) = [1,3,13,75,...] is a(n) = [1,4,23,175,...]. - Michael Somos, Mar 04 2004
Row sums of A232598. So 2*a(n) is the number of formulas in first-order logic that have an n-place predicate, and don't include a negator. - Tilman Piesk, Nov 28 2013

Examples

			Let the colon ":" be a separator between two levels. E.g. in {1,2}:{3} the set {1,2} is on the first level, the set {3} is on the second level.
n=2 gives A083355(2)=4 because we have {1,2} {1}{2} {1}:{2} {2}:{1}.
n=3 gives A083355(3)=23 because we have:
  {1,2,3}
  {1,2}{3} {1,2}:{3} {3}:{1,2}
  {1,3}{2} {1,3}:{2} {2}:{1,3}
  {2,3}{1} {2,3}:{1} {1}:{2,3}
  {1}{2}{3}
  {1}:{2}:{3}
  {3}:{1}:{2}
  {2}:{3}:{1}
  {1}:{3}:{2}
  {2}:{1}:{3}
  {3}:{2}:{1}
  {1}{2}:{3} {1}{3}:{2} {2}{3}:{1}
  {1}:{2}{3} {2}:{1}{3} {3}:{1}{2}.
Examples for the unlabeled case A055887:
n=2 gives A055887(2)=3 because {1,1} {{1}:{1}} {2}
n=3 gives A055887(3)=8 because {1,1,1} {{1}:{1,1}} {{1,1}:{1}} {{1}:{1}:{1}} {1,2} {{1}:{2}} {{2}:{1}} {3}.
		

Crossrefs

Programs

  • Maple
    with(combstruct); SeqSetSetL := [T, {T=Sequence(S), S=Set(U,card >= 1), U=Set(Z,card >= 1)},labeled]; A083355 := n-> count(SeqSetSetL,size=n);
    A083355 := proc(n::integer) #with(combinat); local a,i,j; a:=0; for i from 1 to n do for j from 1 to i do a := a + j!*stirling2(i,j)*stirling2(n,i); od; od; print("n, a(n): ",n, a); end proc; # Thomas Wieder
    A083355 := proc() local a,k,n; for n from 1 to 12 do a[n]:=0: for k from 1 to n do a[n]:=a[n]+stirling2(n,k)*A000670(k): od: od: print(a[1],a[2],a[3],a[4],a[5],a[6],a[7],a[8],a[9],a[10],a[11],a[12]); end proc; A000670 := proc(n) local Result,k; Result:=0: for k from 1 to n do Result:=Result+stirling2(n,k)*k! od: end proc;
  • Mathematica
    Range[0, 18]!CoefficientList[Series[1/(2 - E^(E^x - 1)), {x, 0, 18}], x] (* Robert G. Wilson v, Jul 13 2004 *)
    a[n_] := Sum[StirlingS2[n, k] PolyLog[-k, 1/2]/2, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2016 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(1/(2-exp(exp(x+x*O(x^n))-1)),n))

Formula

E.g.f.: 1/(2-exp(exp(x)-1)).
Representation as a double infinite series (Dobinski-type formula): a(n) = (1/2)*Sum_{k>=1} (k^n/k!)*Sum_{p>=1} p^k/(2*exp(1))^p, n >= 1. - Karol A. Penson and Pawel Blasiak (blasiak(AT)lptl.jussieu.fr), Nov 30 2003
a(n) ~ n!/(2 * c * (log c)^(n+1)) where c = 1 + log 2.
a(n) = Sum_{k=1..n} C(n, k)*Bell(k)*a(n-k). - Vladeta Jovovic, Jul 24 2003
a(n) = Sum_{i=1..n} Sum_{j=1..i} j!*Stirling2(i,j)*Stirling2(n,i). - Thomas Wieder, May 09 2005
a(n) = Sum_{k=1..n} S2(n,k) A000670(k).
a(n) = Sum_{k >= 0} Bell(n,k)/2^(k+1), where Bell(n,x) = Sum_{k = 0..n} Stirling2(n,k)*x^k denotes the n-th Bell or exponential polynomial. - Peter Bala, Jul 09 2014

A382216 Number of normal multisets of size n that can be partitioned into a set of sets with distinct sums.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 23, 48, 101, 208, 434
Offset: 0

Views

Author

Gus Wiseman, Mar 29 2025

Keywords

Comments

We call a multiset normal iff it covers an initial interval of positive integers. The size of a multiset is the number of elements, counting multiplicity.

Examples

			The multiset {1,2,2,3,3} can be partitioned into a set of sets with distinct sums in 4 ways:
  {{2,3},{1,2,3}}
  {{2},{3},{1,2,3}}
  {{2},{1,3},{2,3}}
  {{1},{2},{3},{2,3}}
so is counted under a(5).
The multisets counted by A382214 but not by A382216 are:
  {1,1,1,1,2,2,3,3,3}
  {1,1,2,2,2,2,3,3,3}
The a(1) = 1 through a(5) = 11 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,3}
              {1,2,2}  {1,1,2,3}  {1,1,2,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,3,3}
                       {1,2,3,3}  {1,1,2,3,4}
                       {1,2,3,4}  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

Twice-partitions of this type are counted by A279785, without distinct sums A358914.
Factorizations of this type are counted by A381633, without distinct sums A050326.
Normal multiset partitions of this type are counted by A381718, A116539.
The complement is counted by A382202.
Without distinct sums we have A382214, complement A292432.
The case of a unique choice is counted by A382459, without distinct sums A382458.
For Heinz numbers: A293243, A381806, A382075, A382200.
For integer partitions: A381990, A381992, A382077, A382078.
Strong version: A382523, A382430, A381996, A292444.
Normal multiset partitions: A034691, A035310, A255906.
Set systems: A050342, A296120, A318361.
Set multipartitions: A089259, A270995, A296119, A318360.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[mset_]:=Union[Sort[Sort/@(#/.x_Integer:>mset[[x]])]&/@sps[Range[Length[mset]]]];
    Table[Length[Select[allnorm[n],Length[Select[mps[#],And@@UnsameQ@@@#&&UnsameQ@@Total/@#&]]>0&]],{n,0,5}]

A334030 Number of combinatory separations of a multiset whose multiplicities are the parts of the n-th composition in standard order.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 3, 5, 7, 8, 8, 7, 9, 8, 5, 7, 12, 15, 14, 15, 17, 18, 13, 12, 17, 17, 16, 14, 16, 13, 7, 11, 19, 27, 26, 27, 37, 37, 25, 27, 37, 33, 34, 37, 40, 36, 22, 19, 32, 37, 33, 37, 38, 40, 28, 26, 33, 34, 30, 25, 28, 22, 11, 15, 30, 44, 42, 51, 68
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2020

Keywords

Comments

A multiset is normal if it covers an initial interval of positive integers. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of (3,3,5,5,5,6) is (1,1,2,2,2,3).
A pair h<={g_1,...,g_k} is a combinatory separation iff there exists a multiset partition of h whose multiset of block-types is {g_1,...,g_k}. For example, the (headless) combinatory separations of the multiset (1122) are (1122), (1)(112), (1)(122), (11)(11), (12)(12), (1)(1)(11), (1)(1)(12), (1)(1)(1)(1). This list excludes (12)(11), because one cannot partition (1122) into two blocks where one block has two distinct elements and the other has two equal elements.

Examples

			The combinatory separations for n = 1, 3, 5, 9, 10, 13 (heads not shown):
  (1)  (12)    (112)      (1112)        (1122)        (1223)
       (1)(1)  (1)(11)    (1)(111)      (11)(11)      (1)(112)
               (1)(12)    (1)(112)      (1)(112)      (11)(12)
               (1)(1)(1)  (11)(12)      (1)(122)      (1)(122)
                          (1)(1)(11)    (12)(12)      (1)(123)
                          (1)(1)(12)    (1)(1)(11)    (12)(12)
                          (1)(1)(1)(1)  (1)(1)(12)    (1)(1)(11)
                                        (1)(1)(1)(1)  (1)(1)(12)
                                                      (1)(1)(1)(1)
		

Crossrefs

Multisets of compositions are A034691.
The described multiset is a row of A095684.
Combinatory separations of normal multisets are A269134.
Shuffles of compositions are counted by A292884.
Combinatory separations of prime indices are A318559.
The version for prime indices is A318560.
Combinatory separations of strongly normal multisets are A318563.
Multiset partitions of the described multiset are A333942.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Length of Lyndon factorization is A329312.
- Dealings are counted by A333939.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    ptnToNorm[y_]:=Join@@Table[ConstantArray[i,y[[i]]],{i,Length[y]}];
    Table[Length[Union[Table[Sort[normize/@m],{m,mps[ptnToNorm[stc[n]]]}]]],{n,0,100}]

A333940 Number of Lyndon factorizations of the k-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 5, 1, 2, 2, 4, 1, 4, 2, 7, 1, 2, 1, 4, 1, 2, 1, 7, 1, 2, 2, 4, 2, 5, 2, 7, 1, 2, 3, 9, 2, 5, 2, 12, 1, 2, 1, 4, 1, 2, 2, 7, 1, 2, 1, 4, 1, 2, 1, 11, 1, 2, 2, 4, 2, 5, 2, 7, 1, 4, 4, 11, 2, 5, 2, 12, 1, 2, 2, 4, 1, 7
Offset: 0

Views

Author

Gus Wiseman, Apr 13 2020

Keywords

Comments

We define the Lyndon product of two or more finite sequences to be the lexicographically maximal sequence obtainable by shuffling the sequences together. For example, the Lyndon product of (231) with (213) is (232131), the product of (221) with (213) is (222131), and the product of (122) with (2121) is (2122121). A Lyndon factorization of a composition c is a multiset of compositions whose Lyndon product is c.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Also the number of multiset partitions of the Lyndon-word factorization of the n-th composition in standard order.

Examples

			We have  a(300) = 5, because the 300th composition (3,2,1,3) has the following Lyndon factorizations:
  ((3,2,1,3))
  ((1,3),(3,2))
  ((2),(3,1,3))
  ((3),(2,1,3))
  ((2),(3),(1,3))
		

Crossrefs

The dual version is A333765.
Binary necklaces are counted by A000031.
Necklace compositions are counted by A008965.
Necklaces covering an initial interval are counted by A019536.
Lyndon compositions are counted by A059966.
Numbers whose reversed binary expansion is a necklace are A328595.
Numbers whose prime signature is a necklace are A329138.
Length of Lyndon factorization of binary expansion is A211100.
Length of co-Lyndon factorization of binary expansion is A329312.
Length of co-Lyndon factorization of reversed binary expansion is A329326.
Length of Lyndon factorization of reversed binary expansion is A329313.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Necklaces are A065609.
- Sum is A070939.
- Runs are counted by A124767.
- Rotational symmetries are counted by A138904.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Lyndon compositions are A275692.
- Co-Lyndon compositions are A326774.
- Aperiodic compositions are A328594.
- Reversed co-necklaces are A328595.
- Length of Lyndon factorization is A329312.
- Rotational period is A333632.
- Co-necklaces are A333764.
- Dealing are counted by A333939.
- Reversed necklaces are A333943.
- Length of co-Lyndon factorization is A334029.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    lynprod[]:={};lynprod[{},b_List]:=b;lynprod[a_List,{}]:=a;lynprod[a_List]:=a;
    lynprod[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{lynprod[{a},{x,b}],lynprod[{x,a},{b}]}]],{2,1},Prepend[lynprod[{a},{y,b}],x],{1,2},Prepend[lynprod[{x,a},{b}],y]];
    lynprod[a_List,b_List,c__List]:=lynprod[a,lynprod[b,c]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    dealings[q_]:=Union[Function[ptn,Sort[q[[#]]&/@ptn]]/@sps[Range[Length[q]]]];
    Table[Length[Select[dealings[stc[n]],lynprod@@#==stc[n]&]],{n,0,100}]

Formula

For n > 0, Sum_{k = 2^(n-1)..2^n-1} a(k) = A034691(n).
Previous Showing 21-30 of 145 results. Next