cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A061285 a(n) = 2^((prime(n) - 1)/2).

Original entry on oeis.org

2, 4, 8, 32, 64, 256, 512, 2048, 16384, 32768, 262144, 1048576, 2097152, 8388608, 67108864, 536870912, 1073741824, 8589934592, 34359738368, 68719476736, 549755813888, 2199023255552, 17592186044416, 281474976710656, 1125899906842624, 2251799813685248
Offset: 2

Views

Author

Labos Elemer, May 22 2001

Keywords

Comments

Square root of 2^(prime(n) - 1), i.e., the smallest number that has prime(n) divisors.

Crossrefs

Programs

  • Mathematica
    Table[2^((Prime[n] - 1)/2), {n, 2, 25}] (* Amiram Eldar, Dec 23 2020 *)

Formula

a(n) = sqrt(min(x; A000005(x) = prime(n))) = sqrt(A034785(n)/2) = sqrt(2^(prime(n) - 1)) = sqrt(2^A006093(n)) = sqrt(2^phi(prime(n))) = sqrt(2^A000010(A000040(n))).
Sum_{n>=1} 1/a(n) = A217054. - Amiram Eldar, Dec 23 2020

A098096 Numbers of the form p^2 * 2^p for p prime.

Original entry on oeis.org

16, 72, 800, 6272, 247808, 1384448, 37879808, 189267968, 4437573632, 451508436992, 2063731785728, 188153927303168, 3696558092582912, 16263975998062592, 310889111776919552, 25301222706567446528
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 14 2004

Keywords

Comments

a(n) = A001248(n) * A034785(n). - Reinhard Zumkeller, Feb 07 2015

Crossrefs

Cf. A082949, numbers of the form p^q * q^p, with distinct primes p and q.

Programs

  • Haskell
    a098096 n = a001248 n * a034785 n  -- Reinhard Zumkeller, Feb 07 2015
  • Mathematica
    Table[2^Prime[p]*Prime[p]^2, {p, 16}] (* Alonso del Arte, Oct 28 2005 *)
  • PARI
    forprime(p=2,53,print1(p^2*2^p,","))
    

Extensions

More terms from Klaus Brockhaus and Ray Chandler, Sep 15 2004

A100042 a(n) = prime(n)*2^prime(n).

Original entry on oeis.org

8, 24, 160, 896, 22528, 106496, 2228224, 9961472, 192937984, 15569256448, 66571993088, 5085241278464, 90159953477632, 378231999954944, 6614661952700416, 477381560501272576, 34011184385901985792
Offset: 1

Views

Author

Jorge Coveiro, Dec 26 2004

Keywords

Comments

A lower bound for the 2-color van der Waerden number A005346(prime(n)); see Berlekamp reference. - Charles R Greathouse IV, Jul 13 2008

Crossrefs

Programs

  • Maple
    seq(ithprime(n)*2^ithprime(n),n=1..20);
  • Mathematica
    #*2^#&/@Prime[Range[20]] (* Harvey P. Dale, Sep 18 2020 *)
  • PARI
    a(n) = prime(n)*2^prime(n); \\ Michel Marcus, May 14 2017

Formula

Sum_{n>=1} 1/a(n) = A157413. - Amiram Eldar, Nov 17 2020

A100105 a(n) = 2^prime(n)-prime(n).

Original entry on oeis.org

2, 5, 27, 121, 2037, 8179, 131055, 524269, 8388585, 536870883, 2147483617, 137438953435, 2199023255511, 8796093022165, 140737488355281, 9007199254740939, 576460752303423429, 2305843009213693891
Offset: 1

Views

Author

Jorge Coveiro, Dec 26 2004

Keywords

Crossrefs

Programs

A135171 3^p - 2^p, where p = prime(n).

Original entry on oeis.org

5, 19, 211, 2059, 175099, 1586131, 129009091, 1161737179, 94134790219, 68629840493971, 617671248800299, 450283768452043891, 36472994178147530851, 328256958598444055419, 26588814218220014932459, 19383245658672820642055731, 14130386091162273752461387579, 127173474823342767533669605651
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4)=2059 because the 4th prime number is 7, 3^7=2187, 2^7=128 and 2187-128=2059.
		

Crossrefs

Programs

Formula

a(n) = 3^A000040(n) - 2^A000040(n).
a(n) = A057901(n) - A034785(n). - Michel Marcus, Jun 14 2014

Extensions

More terms from Vincenzo Librandi, Dec 14 2010

A152099 a(n) = (2^prime(n) - 1)*(2^prime(n) + 1) = 2^(2*prime(n)) - 1.

Original entry on oeis.org

15, 63, 1023, 16383, 4194303, 67108863, 17179869183, 274877906943, 70368744177663, 288230376151711743, 4611686018427387903, 18889465931478580854783, 4835703278458516698824703, 77371252455336267181195263, 19807040628566084398385987583
Offset: 1

Views

Author

Roger L. Bagula, Nov 24 2008

Keywords

Comments

Idea resulted from seqfan posts by Artur Jasinski.

Crossrefs

Programs

  • Mathematica
    Table[(2^Prime[n] - 1)*(2^Prime[n] + 1), {n, 1, 20}]
  • Python
    from sympy import prime
    def A152099(n): return (1<<(prime(n)<<1))-1 # Chai Wah Wu, Jun 26 2023

Formula

a(n) = A001348(n) * A098640(n).
a(n) = A034785(n)^2 - 1.
a(n) = A000302(A000040(n)) - 1.

A086690 Number of primes < 2^prime(n).

Original entry on oeis.org

2, 4, 11, 31, 309, 1028, 12251, 43390, 564163, 28192750, 105097565, 5586502348, 80316571436, 305761713237, 4461632979717, 252252704148404, 14458792895301660, 55890484045084135, 3249254387052557215, 48995571600129458363, 190499823401327905601
Offset: 1

Views

Author

Cino Hilliard, Jul 28 2003

Keywords

Examples

			There are 11 primes < 2^prime(3) = 2^5, so a(3) = 11.
		

Crossrefs

Programs

  • Mathematica
    Table[ PrimePi[ 2^Prime[n]], {n, 1, 14}]
  • PARI
    a(n) = primepi(2^prime(n));

Formula

a(n) = A007053(A000040(n)).
a(n) = A000720(A034785(n)). - Amiram Eldar, Jul 06 2024

Extensions

Extended by Robert G. Wilson v, Jul 30 2003
Revised by Max Alekseyev, Jul 20 2007

A121240 Numerator of sum_{k=1..n} 1/2^prime(k).

Original entry on oeis.org

1, 3, 13, 53, 849, 3397, 54353, 217413, 3478609, 222630977, 890523909, 56993530177, 911896482833, 3647585931333, 58361374901329, 3735127993685057, 239048191595843649, 956192766383374597, 61196337048535974209
Offset: 1

Views

Author

Alexander Adamchuk, Aug 22 2006

Keywords

Comments

a(n) is prime for n = {2, 3, 4, 10, 21, 321,..} where it takes the values {3, 13, 53, 222630977, ...}.
The prime constant A051006 = 0.414682509.. is limit(n->infinity) a(n)/2^prime(n) .

Crossrefs

Cf. A034785 (denominators), A072762, A051006, A010051.

Programs

  • Mathematica
    Table[Numerator[Sum[1/2^Prime[k],{k,1,n}]],{n,1,30}]
    Accumulate[1/2^Prime[Range[30]]]//Numerator (* Harvey P. Dale, Aug 11 2021 *)

Formula

a(n) = Numerator[ Sum[ 1/2^Prime[k], {k,1,n} ] ]. a(n) = A072762[ Prime[n] ].

A135175 a(n) = 5^p + 3^p - 2^p, where p = prime(n).

Original entry on oeis.org

30, 144, 3336, 80184, 49003224, 1222289256, 763068462216, 19074648065304, 11921023089868344, 186264583552936197096, 4656613490748641378424, 72759576592118027485247016, 45474735125119406073899483976, 1136868377544417255992242883544, 710542735786689000089344282510584
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4)=80184 because the 4th prime number is 7, 5^7=78125, 3^7=2187, 2^7=128 and 78125+2187-128=80184.
		

Crossrefs

Cf. 2^p: A034785. 3^p: A057901. 2^5: A057902.

Programs

  • Magma
    [5^p+3^p-2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Dec 14 2010
  • Maple
    a:= n-> (p-> 5^p+3^p-2^p)(ithprime(n)):
    seq(a(n), n=1..15);  # Alois P. Heinz, Jun 08 2025
  • Mathematica
    5^#+3^#-2^#&/@Prime[Range[20]]  (* Harvey P. Dale, Apr 04 2011 *)
    Table[5^p + 3^p - 2^p, {p, Prime[Range[20]]}] (* Vincenzo Librandi, May 24 2014 *)

Formula

a(n) = 5^p + 3^p - 2^p with p = A000040(n).

Extensions

More terms from Vincenzo Librandi, Dec 14 2010

A135620 a(n) = 2^(prime(n) - 2).

Original entry on oeis.org

1, 2, 8, 32, 512, 2048, 32768, 131072, 2097152, 134217728, 536870912, 34359738368, 549755813888, 2199023255552, 35184372088832, 2251799813685248, 144115188075855872, 576460752303423488, 36893488147419103232, 590295810358705651712, 2361183241434822606848, 151115727451828646838272
Offset: 1

Views

Author

Omar E. Pol, Mar 01 2008

Keywords

Crossrefs

Partial differences of A135482.

Programs

Formula

a(n) = 2^(A000040(n)-2) = 2^(A040976(n)) = 2^A000040(n)/4 = A061286(n)/2.
a(n) = A034785(n)/4. - Alois P. Heinz, Jun 08 2025
Previous Showing 11-20 of 38 results. Next