A115140
O.g.f. inverse of Catalan A000108 o.g.f.
Original entry on oeis.org
1, -1, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452, -18367353072152
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1668
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
A115141
Convolution of A115140 with itself.
Original entry on oeis.org
1, -2, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452, -18367353072152
Offset: 0
G.f. = 1 - 2*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 - 42*x^6 - 132*x^7 - 429*x^8 + ...
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-2*x+Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019
-
a[n_] := -First[ ListConvolve[ cc = Array[ CatalanNumber, n-1, 0], cc]]; a[0] = 1; a[1] = -2; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 21 2011 *)
CoefficientList[Series[(1-2*x+Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
-
{a(n) = if( n<1, n==0, -(n==1) -binomial( 2*n-2, n-1) / n)} /* Michael Somos, Mar 28 2012 */
-
((1-2*x+sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019
A132460
Irregular triangle read by rows of the initial floor(n/2) + 1 coefficients of 1/C(x)^n, where C(x) is the g.f. of the Catalan sequence (A000108).
Original entry on oeis.org
1, 1, 1, -2, 1, -3, 1, -4, 2, 1, -5, 5, 1, -6, 9, -2, 1, -7, 14, -7, 1, -8, 20, -16, 2, 1, -9, 27, -30, 9, 1, -10, 35, -50, 25, -2, 1, -11, 44, -77, 55, -11, 1, -12, 54, -112, 105, -36, 2, 1, -13, 65, -156, 182, -91, 13, 1, -14, 77, -210, 294, -196, 49, -2
Offset: 0
The irregular triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 ...
-------------------------------------------------
0: 1
1: 1
2: 1 -2
3: 1 -3
4: 1 -4 2
5: 1 -5 5
6: 1 -6 9 -2
7: 1 -7 14 -7
8: 1 -8 20 -16 2
9: 1 -9 27 -30 9
10: 1 -10 35 -50 25 -2
11: 1 -11 44 -77 55 -11
12: 1 -12 54 -112 105 -36 2
13: 1 -13 65 -156 182 -91 13
14: 1 -14 77 -210 294 -196 49 -2
... (reformatted - _Wolfdieter Lang_, May 03 2019)
- Michael De Vlieger, Table of n, a(n) for n = 0..10200 (rows 0 <= n <= 200, flattened)
- Tom Copeland, Addendum to Elliptic Lie Triad
- G. Dattoli, E. Di Palma and E. Sabia, Cardan Polynomials, Chebyshev Exponents, Ultra-Radicals and Generalized Imaginary Units, Advances in Applied Clifford Algebras, 2014.
- Pentti Haukkanen, Jorma Merikoski and Seppo Mustonen, Some polynomials associated with regular polygons, Acta Univ. Sapientiae, Mathematica, 6, 2 (2014) 178-193.
- S. Jablan, Knots, computers, conjectures
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq. (23) with n -> -n and eq. (20).
- Jorma K. Merikoski, Regular polygons, Morgan-Voyce polynomials, and Chebyshev polynomials, Notes on Num. Theor. and Disc. Math. (2021) Vol. 27, No. 2, 79-87.
-
T[0, 0] = 1; T[n_, k_] := (-1)^k (Binomial[n-k, k] + Binomial[n-k-1, k-1]);
Table[T[n, k], {n, 0, 14}, {k, 0, n/2}] // Flatten (* Jean-François Alcover, Jun 04 2018 *)
-
{T(n,k)=if(k>n\2,0,(-1)^k*(binomial(n-k, k)+binomial(n-k-1, k-1)))}
Original entry on oeis.org
1, -10, 35, -50, 25, -2, 0, 0, 0, 0, -1, -10, -65, -350, -1700, -7752, -33915, -144210, -600875, -2466750, -10015005, -40320150, -161280600, -641886000, -2544619500, -10056336264, -39645171810, -155989499540, -612815891050, -2404551645100, -9425842448792
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-10*x+35*x^2-50*x^3+25*x^4-2*x^5 +(1-8*x+21*x^2 -20*x^3+5*x^4 )*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019
-
CoefficientList[Series[(1-10*x+35*x^2-50*x^3+25*x^4-2*x^5 +(1-8*x+21*x^2 -20*x^3+5*x^4)*Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
-
my(x='x+O('x^30)); Vec((1-10*x+35*x^2-50*x^3+25*x^4-2*x^5 +(1-8*x +21*x^2 -20*x^3+5*x^4)*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
-
((1-10*x+35*x^2-50*x^3+25*x^4-2*x^5 +(1-8*x+21*x^2 -20*x^3+5*x^4) *sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019
A374439
Triangle read by rows: the coefficients of the Lucas-Fibonacci polynomials. T(n, k) = T(n - 1, k) + T(n - 2, k - 2) with initial values T(n, k) = k + 1 for k < 2.
Original entry on oeis.org
1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 3, 4, 1, 1, 2, 4, 6, 3, 2, 1, 2, 5, 8, 6, 6, 1, 1, 2, 6, 10, 10, 12, 4, 2, 1, 2, 7, 12, 15, 20, 10, 8, 1, 1, 2, 8, 14, 21, 30, 20, 20, 5, 2, 1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1, 1, 2, 10, 18, 36, 56, 56, 70, 35, 30, 6, 2
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [1, 2]
[ 2] [1, 2, 1]
[ 3] [1, 2, 2, 2]
[ 4] [1, 2, 3, 4, 1]
[ 5] [1, 2, 4, 6, 3, 2]
[ 6] [1, 2, 5, 8, 6, 6, 1]
[ 7] [1, 2, 6, 10, 10, 12, 4, 2]
[ 8] [1, 2, 7, 12, 15, 20, 10, 8, 1]
[ 9] [1, 2, 8, 14, 21, 30, 20, 20, 5, 2]
[10] [1, 2, 9, 16, 28, 42, 35, 40, 15, 10, 1]
.
Table of interpolated sequences:
| n | A039834 & A000045 | A000032 | A000129 | A048654 |
| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|
| | Fibonacci | Lucas | Pell | Pell* |
| 0 | -1 | 1 | 1 | 1 |
| 1 | 1 | 3 | 0 | 4 |
| 2 | 0 | 4 | 1 | 9 |
| 3 | 1 | 7 | 2 | 22 |
| 4 | 1 | 11 | 5 | 53 |
| 5 | 2 | 18 | 12 | 128 |
| 6 | 3 | 29 | 29 | 309 |
| 7 | 5 | 47 | 70 | 746 |
| 8 | 8 | 76 | 169 | 1801 |
| 9 | 13 | 123 | 408 | 4348 |
Adding and subtracting the values in a row of the table (plus halving the values obtained in this way):
A022087,
A055389,
A118658,
A052542,
A163271,
A371596,
A324969,
A212804,
A077985,
A069306,
A215928.
-
function T(n,k) // T = A374439
if k lt 0 or k gt n then return 0;
elif k le 1 then return k+1;
else return T(n-1,k) + T(n-2,k-2);
end if;
end function;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2025
-
A374439 := (n, k) -> ifelse(k::odd, 2, 1)*binomial(n - irem(k, 2) - iquo(k, 2), iquo(k, 2)):
# Alternative, using the function qStirling2 from A333143:
T := (n, k) -> 2^irem(k, 2)*qStirling2(n, k, -1):
seq(seq(T(n, k), k = 0..n), n = 0..10);
-
A374439[n_, k_] := (# + 1)*Binomial[n - (k + #)/2, (k - #)/2] & [Mod[k, 2]];
Table[A374439[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Paolo Xausa, Jul 24 2024 *)
-
from functools import cache
@cache
def T(n: int, k: int) -> int:
if k > n: return 0
if k < 2: return k + 1
return T(n - 1, k) + T(n - 2, k - 2)
-
from math import comb as binomial
def T(n: int, k: int) -> int:
o = k & 1
return binomial(n - o - (k - o) // 2, (k - o) // 2) << o
-
def P(n, x):
if n < 0: return P(n, x)
return sum(T(n, k)*x**k for k in range(n + 1))
def sgn(x: int) -> int: return (x > 0) - (x < 0)
# Table of interpolated sequences
print("| n | A039834 & A000045 | A000032 | A000129 | A048654 |")
print("| n | -P(n,-1) | P(n,1) |2^n*P(n,-1/2)|2^n*P(n,1/2)|")
print("| | Fibonacci | Lucas | Pell | Pell* |")
f = "| {0:2d} | {1:9d} | {2:4d} | {3:5d} | {4:4d} |"
for n in range(10): print(f.format(n, -P(n, -1), P(n, 1), int(2**n*P(n, -1/2)), int(2**n*P(n, 1/2))))
-
from sage.combinat.q_analogues import q_stirling_number2
def A374439(n,k): return (-1)^((k+1)//2)*2^(k%2)*q_stirling_number2(n+1, k+1, -1)
print(flatten([[A374439(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 23 2025
A162514
Triangle of coefficients of polynomials defined by the Binet form P(n,x) = U^n + L^n, where U = (x + d)/2, L = (x - d)/2, d = (4 + x^2)^(1/2). Decreasing powers of x.
Original entry on oeis.org
2, 1, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 4, 0, 2, 1, 0, 5, 0, 5, 0, 1, 0, 6, 0, 9, 0, 2, 1, 0, 7, 0, 14, 0, 7, 0, 1, 0, 8, 0, 20, 0, 16, 0, 2, 1, 0, 9, 0, 27, 0, 30, 0, 9, 0, 1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2, 1, 0, 11, 0, 44, 0, 77, 0, 55, 0, 11, 0, 1, 0, 12, 0, 54, 0, 112, 0, 105, 0, 36, 0, 2, 1, 0, 13, 0
Offset: 0
Triangle begins
2; == 2
1, 0; == x + 0
1, 0, 2; == x^2 + 2
1, 0, 3, 0; == x^3 + 3*x + 0
1, 0, 4, 0, 2;
1, 0, 5, 0, 5, 0;
1, 0, 6, 0, 9, 0, 2;
1, 0, 7, 0, 14, 0, 7, 0;
1, 0, 8, 0, 20, 0, 16, 0, 2;
1, 0, 9, 0, 27, 0, 30, 0, 9, 0;
1, 0, 10, 0, 35, 0, 50, 0, 25, 0, 2;
...
From _Wolfdieter Lang_, Aug 07 2014: (Start)
The row polynomials R(n, x) are:
R(0, x) = 2, R(1, x) = 1 = x*P(1,1/x), R(2, x) = 1 + 2*x^2 = x^2*P(2,1/x), R(3, x) = 1 + 3*x^2 = x^3*P(3,1/x), ...
(End)
-
Table[Reverse[CoefficientList[LucasL[n, x], x]], {n, 0, 12}]//Flatten (* G. C. Greubel, Nov 05 2018 *)
-
P(n)=
{
local(U, L, d, r, x);
if ( n<0, return(0) );
x = 'x+O('x^(n+1));
d=(4 + x^2)^(1/2);
U=(x+d)/2; L=(x-d)/2;
r = U^n+L^n;
r = truncate(r);
return( r );
}
for (n=0, 10, print(Vec(P(n))) ); /* show triangle */
/* Joerg Arndt, Jul 24 2011 */
A199969
a(n) = the greatest non-divisor h of n (1 < h < n), or 0 if no such h exists.
Original entry on oeis.org
0, 0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
Offset: 1
-
Join[{0,0},Table[Max[Complement[Range[n],Divisors[n]]],{n,3,70}]] (* or *) Join[{0,0},Range[2,70]] (* Harvey P. Dale, May 31 2014 *)
-
if(n>2,n-1,0) \\ Charles R Greathouse IV, Sep 02 2015
A355345
G.f.: Sum_{n=-oo..+oo} x^(n*(n+1)/2) * C(x)^(2*n-1), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
Original entry on oeis.org
2, -2, -5, 6, -7, 14, -6, -9, 27, -30, 10, -11, 44, -77, 55, -10, -13, 65, -156, 182, -91, 14, -15, 90, -275, 450, -378, 140, -14, -17, 119, -442, 935, -1122, 714, -204, 18, -19, 152, -665, 1729, -2717, 2508, -1254, 285, -18, -21, 189, -952, 2940, -5733, 7007, -5148, 2079, -385, 22, -23, 230, -1311, 4692, -10948, 16744, -16445, 9867, -3289, 506
Offset: 0
G.f.: A(x) = 2 - 2*x - 5*x^2 + 6*x^3 - 7*x^4 + 14*x^5 - 6*x^6 - 9*x^7 + 27*x^8 - 30*x^9 + 10*x^10 - 11*x^11 + 44*x^12 - 77*x^13 + 55*x^14 - 10*x^15 - 13*x^16 + 65*x^17 - 156*x^18 + 182*x^19 - 91*x^20 + ...
such that
A(x) = ... + x^6/C(x)^9 + x^3/C(x)^7 + x/C(x)^5 + 1/C(x)^3 + 1/C(x) + x*C(x) + x^3*C(x)^3 + x^6*C(x)^5 + x^10*C(x)^7 + x^15*C(x)^9 + ... + x^(n*(n+1)/2) * C(x)^(2*n-1) + ...
also
A(x) = 1/C(x)^3 * (1 + C(x)^2)*(1 + x/C(x)^2)*(1-x) * (1 + x*C(x)^2)*(1 + x^2/C(x)^2)*(1-x^2) * (1 + x^2*C(x)^2)*(1 + x^3/C(x)^2)*(1-x^3) * (1 + x^3*C(x)^2)*(1 + x^4/C(x)^2)*(1-x^4) * ... * (1 + x^(n-1)*C(x)^2)*(1 + x^n/C(x)^2)*(1-x^n) * ...
where C(x) = 1 + x*C(x)^2 begins
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ... + A000108(n)*x^n + ...
RELATED TABLE.
This sequence also forms the antidiagonals of the rectangular table given by:
n = 0: [ 2, -5, 14, -30, 55, -91, 140, -204, ...];
n = 1: [ -2, -7, 27, -77, 182, -378, 714, -1254, ...];
n = 2: [ 6, -9, 44, -156, 450, -1122, 2508, -5148, ...];
n = 3: [ -6, -11, 65, -275, 935, -2717, 7007, -16445, ...];
n = 4: [ 10, -13, 90, -442, 1729, -5733, 16744, -44200, ...];
n = 5: [-10, -15, 119, -665, 2940, -10948, 35700, -104652, ...];
n = 6: [ 14, -17, 152, -952, 4692, -19380, 69768, -224808, ...];
n = 7: [-14, -19, 189, -1311, 7125, -32319, 127281, -447051, ...];
n = 8: [ 18, -21, 230, -1750, 10395, -51359, 219604, -834900, ...];
...
in which row n has g.f.: (-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4) for n >= 0.
Thus, the terms of this sequence obey the rule
a((n+k)*(n+k+1)/2 + k) = [x^k] ((-1)^n*(2*n+1) + (1-x)/(1+x)^(2*n+4)), for n >= 0, k = 0..n.
Equivalently,
a((n+k)*(n+k+1)/2 + k) = (-1)^k*(binomial(2*n+k+3,k) + binomial(2*n+k+2,k-1)), for n >= 0, k >= 1, with a(n*(2*n+1)) = 2*(2*n+1) and a((n+1)*(2*n+1)) = -2*(2*n+1) for n >= 0.
For example,
a((n+1)*(n+2)/2 + 1) = -(2*n+5) for n >= 0,
a((n+2)*(n+3)/2 + 2) = (n+2)*(2*n+7) for n >= 0,
a(n*(n+3)/2) = (-1)^n * (n+1)*(n+2)*(2*n+3)/6 for n >= 1,
a(2*n*(n+1)) = (-1)^n * (binomial(3*n+3,n) + binomial(3*n+2,n-1)) = (-1)^n * A355347(n), for n >= 1.
...
-
{a(n) = my(A,C=1/x*serreverse(x-x^2 +O(x^(n+2))),M=ceil(sqrt(2*n+9)));
A = sum(m=-M,M, x^(m*(m+1)/2) * C^(2*m-1) ); polcoeff(A,n)}
for(n=0,70,print1(a(n),", "))
-
{a(n) = my(A,M=ceil(sqrt(2*n+1)));
A = sum(m=0,M, sum(k=0,n-m*(m+1)/2, x^((m+k)*(m+k+1)/2 + k) * polcoeff( (-1)^m*(2*m+1) + (1-x)/(1+x +x^2*O(x^k))^(2*m+4) ,k) )); polcoeff(A,n)}
for(n=0,70,print1(a(n),", "))
A061896
Triangle of coefficients of Lucas polynomials.
Original entry on oeis.org
2, 1, 0, 1, 2, 0, 1, 3, 0, 0, 1, 4, 2, 0, 0, 1, 5, 5, 0, 0, 0, 1, 6, 9, 2, 0, 0, 0, 1, 7, 14, 7, 0, 0, 0, 0, 1, 8, 20, 16, 2, 0, 0, 0, 0, 1, 9, 27, 30, 9, 0, 0, 0, 0, 0, 1, 10, 35, 50, 25, 2, 0, 0, 0, 0, 0, 1, 11, 44, 77, 55, 11, 0, 0, 0, 0, 0, 0, 1, 12, 54, 112, 105, 36, 2, 0, 0, 0, 0, 0, 0, 1, 13
Offset: 0
Triangle begins:
2,
1, 0.
1, 2, 0.
1, 3, 0, 0.
1, 4, 2, 0, 0.
1, 5, 5, 0, 0, 0.
1, 6, 9, 2, 0, 0, 0.
Alternative version of
A034807. With alternating signs, these are the coefficients of the recurrences in
A061897.
-
a[0, 0] := 2; a[n_, 0] := 1; a[n_, n_] := 0; a[n_, k_] := Binomial[n - k, k]*n/(n - k); Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
Original entry on oeis.org
1, -3, 0, -1, -3, -9, -28, -90, -297, -1001, -3432, -11934, -41990, -149226, -534888, -1931540, -7020405, -25662825, -94287120, -347993910, -1289624490, -4796857230, -17902146600, -67016296620, -251577050010, -946844533674, -3572042254128, -13505406670700
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2*(1-2*x)-(1-x)*(1-Sqrt(1-4*x)))/2 )); // G. C. Greubel, Feb 12 2019
-
CoefficientList[Series[(2*(1-2*x)-(1-x)*(1-Sqrt[1-4*x]))/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
-
my(x='x+O('x^30)); Vec((2*(1-2*x)-(1-x)*(1-sqrt(1-4*x)))/2) \\ G. C. Greubel, Feb 12 2019
-
((2*(1-2*x)-(1-x)*(1-sqrt(1-4*x)))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019
Comments