cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 62 results. Next

A056911 Odd squarefree numbers.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 29, 31, 33, 35, 37, 39, 41, 43, 47, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 123, 127, 129, 131, 133, 137, 139, 141, 143, 145, 149, 151
Offset: 1

Views

Author

James Sellers, Jul 07 2000

Keywords

Comments

From Daniel Forgues, May 27 2009: (Start)
For any prime p, there are as many squarefree numbers having p as a factor as squarefree numbers not having p as a factor amongst all the squarefree numbers (one-to-one correspondence, both cardinality aleph_0).
E.g. there are as many even squarefree numbers as there are odd squarefree numbers.
For any prime p, the density of squarefree numbers having p as a factor is 1/p of the density of squarefree numbers not having p as a factor.
E.g. the density of even squarefree numbers is 1/p = 1/2 of the density of odd squarefree numbers (which means that 1/(p + 1) = 1/3 of the squarefree numbers are even and p/(p + 1) = 2/3 are odd). As a consequence the n-th even squarefree number is very nearly p = 2 times the n-th odd squarefree number (which means that the n-th even squarefree number is very nearly (p + 1) = 3 times the n-th squarefree number while the n-th odd squarefree number is very nearly (p + 1)/p = 3/2 the n-th squarefree number).
For any prime p, the n-th squarefree number not divisible by p is: n * (1 + 1/p) * zeta(2) + O(n^(1/2)) = n * (1 + 1/p) * (Pi^2 / 6) + O(n^(1/2)) (End)

Examples

			The exponents in the prime factorization of 15 are all equal to 1, so 15 appears here. The number 75 does not appear in this sequence, as it is divisible by the square number 25.
		

Crossrefs

Subsequence of A005117 and A036537.
Equals A039956/2.
Cf. A238711 (subsequence).

Programs

  • Haskell
    a056911 n = a056911_list !! (n-1)
    a056911_list = filter ((== 1) . a008966) [1,3..]
    -- Reinhard Zumkeller, Aug 27 2011
    
  • Magma
    [n: n in [1..151 by 2] | IsSquarefree(n)]; // Bruno Berselli, Mar 03 2011
    
  • Mathematica
    Select[Range[1,151,2],SquareFreeQ] (* Ant King, Mar 17 2013 *)
  • PARI
    is(n)=n%2 && issquarefree(n) \\ Charles R Greathouse IV, Mar 26 2013
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(k=1,lim\1, if(k[1]%2, listput(v,k[1]))); Vec(v) \\ Charles R Greathouse IV, Jan 14 2025

Formula

A123314(A100112(a(n))) > 0. - Reinhard Zumkeller, Sep 25 2006
a(n) = n * (3/2) * zeta(2) + O(n^(1/2)) = n * (Pi^2 / 4) + O(n^(1/2)). - Daniel Forgues, May 27 2009
A008474(a(n)) * A000035(a(n)) = 1. - Reinhard Zumkeller, Aug 27 2011
Sum_{n>=1} 1/a(n)^s = ((2^s)* zeta(s))/((1+2^s)*zeta(2*s)). - Enrique Pérez Herrero, Sep 15 2012 [corrected by Amiram Eldar, Sep 26 2023]

A209061 Exponentially squarefree numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 13 2012

Keywords

Comments

Numbers having only squarefree exponents in their canonical prime factorization.
According to the formula of Theorem 3 [Toth], the density of the exponentially squarefree numbers is 0.9559230158619... (A262276). - Peter J. C. Moses and Vladimir Shevelev, Sep 10 2015
From Vladimir Shevelev, Sep 24 2015: (Start)
A generalization. Let S be a finite or infinite increasing integer sequence s=s(n), s(0)=0.
Let us call a positive number N an exponentially S-number, if all exponents in its prime power factorization are in the sequence S.
Let {u(n)} be the characteristic function of S. Then, for the density h=h(S) of the exponentially S-numbers, we have the representations
h(S) = Product_{prime p} Sum_{j in S} (p-1)/p^(j+1) = Product_{p} (1 + Sum_{j>=1} (u(j) - u(j-1))/p^j). In particular, if S = {0,1}, then the exponentially S-numbers are squarefree numbers; if S consists of 0 and {2^k}A138302%20(see%20%5BShevelev%5D,%202007);%20if%20S%20consists%20of%200%20and%20squarefree%20numbers,%20then%20u(n)=%7Cmu(n)%7C,%20where%20mu(n)%20is%20the%20M%C3%B6bius%20function%20(A008683),%20we%20obtain%20the%20density%20h%20of%20the%20exponentially%20squarefree%20numbers%20(cf.%20Toth's%20link,%20Theorem%203);%20the%20calculation%20of%20h%20with%20a%20very%20high%20degree%20of%20accuracy%20belongs%20to%20_Juan%20Arias-de-Reyna">{k>=0}, then the exponentially S-numbers form A138302 (see [Shevelev], 2007); if S consists of 0 and squarefree numbers, then u(n)=|mu(n)|, where mu(n) is the Möbius function (A008683), we obtain the density h of the exponentially squarefree numbers (cf. Toth's link, Theorem 3); the calculation of h with a very high degree of accuracy belongs to _Juan Arias-de-Reyna (A262276). Note that if S contains 1, then h(S) >= 1/zeta(2) = 6/Pi^2; otherwise h(S) = 0. Indeed, in the latter case, the density of the sequence of exponentially S-numbers does not exceed the density of A001694, which equals 0. (End)
The term "exponentially squarefree number" was apparently coined by Subbarao (1972). - Amiram Eldar, May 28 2025

Crossrefs

Programs

  • Haskell
    a209061 n = a209061_list !! (n-1)
    a209061_list = filter
       (all (== 1) . map (a008966 . fromIntegral) . a124010_row) [1..]
    
  • Mathematica
    Select[Range@ 69, Times @@ Boole@ Map[SquareFreeQ, Last /@ FactorInteger@ #] > 0 &] (* Michael De Vlieger, Sep 07 2015 *)
  • PARI
    is(n)=my(f=factor(n)[,2]); for(i=1,#f,if(!issquarefree(f[i]), return(0))); 1 \\ Charles R Greathouse IV, Sep 02 2015

Formula

A166234(a(n)) <> 0.
Product_{k=1..A001221(n)} A008966(A124010(n,k)) = 1.
One can prove that the principal term of Toth's asymptotics for the density of this sequence (cf. Toth's link, Theorem 3) equals also Product_{prime p}(Sum_{j in S}(p-1)/p^{j+1})*x, where S is the set of 0 and squarefree numbers. The remainder term O(x^(0.2+t)), where t>0 is arbitrarily small, was obtained by L. Toth while assuming the Riemann Hypothesis. - Vladimir Shevelev, Sep 12 2015

A048109 Numbers having equally many squarefree and nonsquarefree divisors; number of unitary divisors of n (A034444) = number of non-unitary divisors of n (A048105).

Original entry on oeis.org

8, 24, 27, 40, 54, 56, 88, 104, 120, 125, 135, 136, 152, 168, 184, 189, 232, 248, 250, 264, 270, 280, 296, 297, 312, 328, 343, 344, 351, 375, 376, 378, 408, 424, 440, 456, 459, 472, 488, 513, 520, 536, 552, 568, 584, 594, 616, 621, 632, 664, 680, 686, 696
Offset: 1

Views

Author

Keywords

Comments

For these terms the number of divisors should be a special power of two because ud(n) = 2^r and nud(n) = ud(n). In particular the exponent of 2 is 1+A001221(n), the number of distinct prime factors + 1. Thus this is a subsequence of A036537 where A000005(A036537(n)) = 2^s; here s = 1+A001221(n).
Let us introduce a function D(n) = sigma_0(n)/2^(alpha(1)+...+alpha(r)), sigma_0(n) number of divisors of n (A000005), prime factorization of n = p(1)^alpha(1) * ... * p(r)^alpha(r), alpha(1)+...+alpha(r) is sequence (A001222). This function splits the set of positive integers into subsets, according to the value of D(n). Squarefree numbers (A005117) has D(n)=1, other numbers are "deviated" from the squarefree ideal and have 0 < D(n) < 1. So for D(n)=1/2 we have A048109, D(n)=3/4 we have A060687. - Ctibor O. Zizka, Sep 21 2008
Integers n such that there are exactly 3 Abelian groups of order n. That is, n such that A000688(n)=3. In other words, in the prime factorization of n there is exactly one prime with exponent of 3 and the others have exponent of 1. - Geoffrey Critzer, Jun 09 2015
The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} 1/(prime(k)^2*(prime(k)+1)) = (1/zeta(2)) * Sum_{k>=3} (-1)^(k+1) * P(k) = 0.0741777413672596019212880156082745910562809066233004356300970463709875..., where P is the prime zeta function. - Amiram Eldar, Jul 11 2020

Examples

			n = 88 = 2*2*2*11 has 8 divisors, of which 4 are unitary divisors (because of 2 distinct prime factors) and 4 are nonunitary divisors: U={1,88,11,8} and NU = {2,44,4,22}.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n)[2];
      mul(t[2]+1,t=F) = 2^(1+nops(F))
    end proc;
    select(filter, [$1..1000]); # Robert Israel, Jun 09 2015
  • Mathematica
    Position[Table[FiniteAbelianGroupCount[n], {n, 1, 1000}],3] // Flatten (* Geoffrey Critzer, Jun 09 2015 *)
  • PARI
    is(n)=select(e->e>1, factor(n)[,2])==[3]~ \\ Charles R Greathouse IV, Jun 10 2015
    
  • PARI
    isok(n) = sumdiv(n, d, issquarefree(d)) == sumdiv(n, d, !issquarefree(d)); \\ Michel Marcus, Jun 24 2015
    
  • Python
    from math import isqrt
    from sympy import mobius, primerange
    def A048109(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x): return sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def f(x): return int(n+x+sum(sum(-g(x//p**j) if j&1 else g(x//p**j) for j in range(3,x.bit_length())) for p in primerange(isqrt(x)+1)))
        return bisection(f,n,n) # Chai Wah Wu, Feb 24 2025

Formula

Numbers k such that d(k) = 2^(omega(k)+1) or A000005(k) = 2^(A001221(k) + 1) = 2 * A034444(k).

Extensions

New name based on comment by Ivan Neretin, Jun 19 2015

A337050 Numbers without an exponent 2 in their prime factorization.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 48, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87
Offset: 1

Views

Author

Amiram Eldar, Aug 12 2020

Keywords

Comments

Numbers k such that the powerful part (A057521) of k is a cubefull number (A036966).
Numbers k such that A003557(k) = k/A007947(k) is a powerful number (A001694).
The asymptotic density of this sequence is Product_{primes p} (1 - 1/p^2 + 1/p^3) = 0.748535... (A330596).
A304364 is apparently a subsequence.
These numbers were named semi-2-free integers by Suryanarayana (1971). - Amiram Eldar, Dec 29 2020

Examples

			6 = 2^1 * 3^1 is a term since none of the exponents in its prime factorization is equal to 2.
9 = 3^2 is not a term since it has an exponent 2 in its prime factorization.
		

Crossrefs

Complement of A038109.
A005117, A036537, A036966, A048109, A175496, A268335 and A336590 are subsequences.
Numbers without an exponent k in their prime factorization: A001694 (k=1), this sequence (k=2), A386799 (k=3), A386803 (k=4), A386807 (k=5).
Numbers that have exactly m exponents in their prime factorization that are equal to 2: this sequence (m=0), A386796 (m=1), A386797 (m=2), A386798 (m=3).

Programs

  • Maple
    q:= n-> andmap(i-> i[2]<>2, ifactors(n)[2]):
    select(q, [$1..100])[];  # Alois P. Heinz, Aug 12 2020
  • Mathematica
    Select[Range[100], !MemberQ[FactorInteger[#][[;;, 2]], 2] &]
  • PARI
    is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 2, return(0))); 1; } \\ Amiram Eldar, Oct 21 2023

Formula

Sum_{n>=1} 1/a(n)^s = zeta(s) * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)), for s > 1. - Amiram Eldar, Oct 21 2023

A046642 Numbers k such that k and number of divisors d(k) are relatively prime.

Original entry on oeis.org

1, 3, 4, 5, 7, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 100, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 125, 127, 129, 131
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that tau(k)^phi(k) == 1 (mod k), where tau(k) is the number of divisors of k (A000005) and phi(k) is the Euler phi function (A000010). - Michel Lagneau, Nov 20 2012
Density is at least 4/Pi^2 = 0.405... since A056911 is a subsequence, and at most 1/2 since all even numbers in this sequence are squares. The true value seems to be around 0.4504. - Charles R Greathouse IV, Mar 27 2013
They are called anti-tau numbers by Zelinsky (see link) and their density is at least 3/Pi^2 (theorem 57 page 15). - Michel Marcus, May 31 2015
From Amiram Eldar, Feb 21 2021: (Start)
Spiro (1981) proved that the number of terms of this sequence that do not exceed x is c * x + O(sqrt(x)*log(x)^3), where 0 < c < 1 is the asymptotic density of this sequence.
The odd numbers whose number of divisors is a power of 2 (the odd terms of A036537) are terms of this sequence. Their asymptotic density is A327839/A076214 = 0.4212451116... which is a better lower bound than 4/Pi^2 for the asymptotic density of this sequence.
A better upper limit than 0.5 can be obtained by considering the subsequence of odd numbers whose 3-adic valuation is not of the form 3*k-1 (i.e., odd numbers without those k with gcd(k, tau(k)) = 3), whose asymptotic density is 6/13 = 0.46153...
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 5, 49, 459, 4535, 45145, 450710, 4504999, 45043234, 450411577, 4504050401, ... (End)

Crossrefs

Programs

Formula

A009191(a(n)) = 1.

A162643 Numbers whose number of divisors is not a power of 2.

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 32, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 72, 75, 76, 80, 81, 84, 90, 92, 96, 98, 99, 100, 108, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 160, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2009

Keywords

Comments

A number m is a term if and only if it has at least one non-infinitary divisor, or A000005(m) > A037445(m). - Vladimir Shevelev, Feb 23 2017
The asymptotic density of this sequence is 1 - A327839 = 0.3121728605... - Amiram Eldar, Jul 28 2020

Crossrefs

Complement of A036537.
A072587 is a subsequence.

Programs

  • Haskell
    a162643 n = a162643_list !! (n-1)
    a162643_list = filter ((== 0) . a209229 . a000005) [1..]
    -- Reinhard Zumkeller, Nov 15 2012
    
  • Mathematica
    Select[Range@ 192, ! IntegerQ@ Log2@ DivisorSigma[0, #] &] (* Michael De Vlieger, Feb 24 2017 *)
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A162643_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:any(map(lambda m:((k:=m+1)&-k)^k,factorint(n).values())),count(max(startvalue,1)))
    A162643_list = list(islice(A162643_gen(),30)) # Chai Wah Wu, Jan 04 2023

Formula

A209229(A000005(a(n))) = 0. - Reinhard Zumkeller, Nov 15 2012

A002035 Numbers that contain primes to odd powers only.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 101
Offset: 1

Views

Author

Keywords

Comments

Complement of the union of {1} and A072587. - Reinhard Zumkeller, Nov 15 2012, corrected version from Jun 23 2002
A036537 is a subsequence and this sequence is a subsequence of A162644. - Reinhard Zumkeller, Jul 08 2009
The asymptotic density of this sequence is A065463. - Amiram Eldar, Sep 18 2022

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002035 n = a002035_list !! (n-1)
    a002035_list = filter (all odd . a124010_row) [1..]
    -- Reinhard Zumkeller, Nov 14 2012
    
  • Maple
    isA002035 := proc(n)
        local pe;
        for pe in ifactors(n)[2] do
            if type(pe[2],'even') then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A002035 := proc(n)
        option remember;
        if n =1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA002035(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A002035(n),n=1..100) ; # R. J. Mathar, Nov 27 2017
  • Mathematica
    ok[n_] := And @@ OddQ /@ FactorInteger[n][[All, 2]];
    Select[Range[2, 101], ok]
    (* Jean-François Alcover, Apr 22 2011 *)
    Select[Range[2,110],AllTrue[FactorInteger[#][[All,2]],OddQ]&] (* Harvey P. Dale, Nov 02 2022 *)
  • PARI
    is(n)=Set(factor(n)[,2]%2)==[1] \\ Charles R Greathouse IV, Feb 07 2017

Extensions

More terms from Reinhard Zumkeller, Jun 23 2002

A348271 a(n) is the sum of noninfinitary divisors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 8, 0, 0, 0, 14, 0, 9, 0, 12, 0, 0, 0, 0, 5, 0, 0, 16, 0, 0, 0, 12, 0, 0, 0, 41, 0, 0, 0, 0, 0, 0, 0, 24, 18, 0, 0, 56, 7, 15, 0, 28, 0, 0, 0, 0, 0, 0, 0, 48, 0, 0, 24, 42, 0, 0, 0, 36, 0, 0, 0, 45, 0, 0, 20, 40, 0, 0, 0, 84, 39
Offset: 1

Views

Author

Amiram Eldar, Oct 09 2021

Keywords

Examples

			a(12) = 8 since 12 has 2 noninfinitary divisors, 2 and 6, and 2 + 6 = 8.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ f @@@ FactorInteger[n]; a[n_]:= DivisorSigma[1,n] - isigma[n]; Array[a, 100]

Formula

a(n) = A000203(n) - A049417(n).
a(n) = 0 if and only if the number of divisors of n is a power of 2, (i.e., n is in A036537).
a(n) > 0 if and only if the number of divisors of n is not a power of 2, (i.e., n is in A162643).

A162511 Multiplicative function with a(p^e) = (-1)^(e-1).

Original entry on oeis.org

1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1
Offset: 1

Views

Author

Gerard P. Michon, Jul 05 2009

Keywords

Crossrefs

Programs

  • Maple
    A162511 := proc(n)
        local a,f;
        a := 1;
        for f in ifactors(n)[2] do
            a := a*(-1)^(op(2,f)-1) ;
        end do:
        return a;
    end proc: # R. J. Mathar, May 20 2017
  • Mathematica
    a[n_] := (-1)^(PrimeOmega[n] - PrimeNu[n]); Array[a, 100] (* Jean-François Alcover, Apr 24 2017, after Reinhard Zumkeller *)
  • PARI
    a(n)=my(f=factor(n)[,2]); prod(i=1,#f,-(-1)^f[i]) \\ Charles R Greathouse IV, Mar 09 2015
    
  • Python
    from sympy import factorint
    from operator import mul
    def a(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [(-1)**(f[i] - 1) for i in f]) # Indranil Ghosh, May 20 2017
    
  • Python
    from functools import reduce
    from sympy import factorint
    def A162511(n): return -1 if reduce(lambda a,b:~(a^b), factorint(n).values(),0)&1 else 1 # Chai Wah Wu, Jan 01 2023

Formula

Multiplicative function with a(p^e)=(-1)^(e-1) for any prime p and any positive exponent e.
a(n) = 1 when n is a squarefree number (A005117).
From Reinhard Zumkeller, Jul 08 2009 (Start)
a(n) = (-1)^(A001222(n)-A001221(n)).
a(A162644(n)) = +1; a(A162645(n)) = -1. (End)
a(n) = A076479(n) * A008836(n). - R. J. Mathar, Mar 30 2011
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A307868. - Amiram Eldar, Sep 18 2022
Dirichlet g.f.: Product_{p prime} ((p^s + 2)/(p^s + 1)). - Amiram Eldar, Oct 26 2023

A348341 a(n) is the number of noninfinitary divisors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 6, 1, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 2, 3, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 2, 2, 0, 0, 0, 6, 3, 0, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Examples

			a(4) = 1 since 4 has one noninfinitary divisor, 2.
		

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; Array[a, 100]
  • PARI
    A348341(n) = (numdiv(n)-factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2]))); \\ Antti Karttunen, Oct 13 2021

Formula

a(n) = A000005(n) - A037445(n).
a(n) = 0 if and only if the number of divisors of n is a power of 2, (i.e., n is in A036537).
a(n) > 0 if and only if the number of divisors of n is not a power of 2, (i.e., n is in A162643).
Sum_{k=1..n} a(k) ~ c * n * log(n), where c = (1 - 2 * A327576) = 0.266749... . - Amiram Eldar, Dec 09 2022
Previous Showing 11-20 of 62 results. Next