cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 48 results. Next

A288942 Number A(n,k) of ordered rooted trees with n non-root nodes and all outdegrees <= k; square array A(n,k), n >= 0, k >= 0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 9, 1, 0, 1, 1, 2, 5, 13, 21, 1, 0, 1, 1, 2, 5, 14, 36, 51, 1, 0, 1, 1, 2, 5, 14, 41, 104, 127, 1, 0, 1, 1, 2, 5, 14, 42, 125, 309, 323, 1, 0, 1, 1, 2, 5, 14, 42, 131, 393, 939, 835, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 01 2017

Keywords

Comments

Also the number of Dyck paths of semilength n with all ascent lengths <= k. A(4,2) = 9: /\/\/\/\, //\\/\/\, /\//\\/\, /\/\//\\, //\/\\/\, //\/\/\\, /\//\/\\, //\\//\\, //\//\\\.
Also the number of permutations p of [n] such that in 0p all up-jumps are <= k and no down-jump is larger than 1. An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here. A(4,2) = 9: 1234, 1243, 1324, 1342, 2134, 2143, 2314, 2341, 2431.

Examples

			A(4,2) = 9:
.
.   o    o      o      o      o      o       o      o       o
.   |    |      |      |     / \    / \     / \    / \     / \
.   o    o      o      o    o   o  o   o   o   o  o   o   o   o
.   |    |     / \    / \   |          |  ( )        ( )  |   |
.   o    o    o   o  o   o  o          o  o o        o o  o   o
.   |   / \   |          |  |          |
.   o  o   o  o          o  o          o
.   |
.   o
.
Square array A(n,k) begins:
  1, 1,   1,   1,    1,    1,    1,    1,    1, ...
  0, 1,   1,   1,    1,    1,    1,    1,    1, ...
  0, 1,   2,   2,    2,    2,    2,    2,    2, ...
  0, 1,   4,   5,    5,    5,    5,    5,    5, ...
  0, 1,   9,  13,   14,   14,   14,   14,   14, ...
  0, 1,  21,  36,   41,   42,   42,   42,   42, ...
  0, 1,  51, 104,  125,  131,  132,  132,  132, ...
  0, 1, 127, 309,  393,  421,  428,  429,  429, ...
  0, 1, 323, 939, 1265, 1385, 1421, 1429, 1430, ...
		

Crossrefs

Main diagonal (and upper diagonals) give A000108.
First lower diagonal gives A001453.
Cf. A203717.

Programs

  • Maple
    b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
          add(b(u-j, o+j-1, k), j=1..min(1, u))+
          add(b(u+j-1, o-j, k), j=1..min(k, o)))
        end:
    A:= (n, k)-> b(0, n, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    A[n_, k_] := b[0, n, k];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Oct 27 2017, translated from Maple *)
  • PARI
    T(n,k)=polcoeff(serreverse(x*(1-x)/(1-x*x^k) + O(x^2*x^n)), n+1);
    for(n=0, 10, for(k=0, 10, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 29 2017

Formula

A(n,k) = Sum_{j=0..k} A203717(n,j).
G.f. of column k: G(x)/x where G(x) is the reversion of x*(1-x)/(1-x^(k+1)). - Andrew Howroyd, Nov 30 2017
G.f. g_k(x) of column k satisfies: g_k(x) = Sum_{j=0..k} (x*g_k(x))^j. - Alois P. Heinz, May 05 2019
A(n,k) = Sum_{j=0..n/(k+1)} (-1)^j/(n+1) * binomial(n+1,j) * binomial(2*n-j*(k+1),n). [Hein Eq (10)] - R. J. Mathar, Oct 14 2022; corrected by Tijn Caspar de Leeuw, Jul 07 2024

A200718 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x^2*A(x)^6).

Original entry on oeis.org

1, 1, 3, 14, 75, 433, 2636, 16668, 108399, 720431, 4871555, 33409042, 231817448, 1624503716, 11480658056, 81731416480, 585579734959, 4219179476875, 30552067317233, 222225174139730, 1622894404239115, 11894991079960721, 87472260252499560, 645183802300787356, 4771926560361458884
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 75*x^4 + 433*x^5 + 2636*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 34*x^3 + 187*x^4 + 1100*x^5 + 6784*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 194*x^3 + 1200*x^4 + 7674*x^5 + 50317*x^6 +...
A(x)^8 = 1 + 8*x + 52*x^2 + 336*x^3 + 2210*x^4 + 14776*x^5 + 100216*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^6 + x^3*A(x)^8.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^4)*x*A + (1 + 2^2*x*A^4 + x^2*A^8)*x^2*A^2/2 +
(1 + 3^2*x*A^4 + 3^2*x^2*A^8 + x^3*A^12)*x^3*A^3/3 +
(1 + 4^2*x*A^4 + 6^2*x^2*A^8 + 4^2*x^3*A^12 + x^4*A^16)*x^4*A^4/4 +
(1 + 5^2*x*A^4 + 10^2*x^2*A^8 + 10^2*x^3*A^12 + 5^2*x^4*A^16 + x^5*A^20)*x^5*A^5/5 + ...
The g.f. of A104545, G(x) = A(x/G(x)^2) where A(x) = G(x*A(x)^2), begins:
G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Binomial[2*n + 2*k + 1, k]*Binomial[2*n + 2*k + 1, n - 2*k]/ (2*n + 2*k + 1), {k, 0, n/2}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jan 09 2018, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((binomial(2*n+2*k+1,k)*binomial(2*n+2*k+1,n-2*k))/(2*n+2*k+1),k,0,(n)/2); /* Vladimir Kruchinin, Mar 11 2016 */
  • PARI
    {a(n)=polcoeff(sqrt( (1/x)*serreverse( 2*x^5*(1+x)^2/(1 - 2*x^2*(1+x)^2 - sqrt(1 - 4*x^2*(1+x)^2+O(x^(n+6)))) ) ),n)}
    
  • PARI
    {a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=1,q=4,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    

Formula

G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( 2*x^5*(1+x)^2/(1 - 2*x^2*(1+x)^2 - sqrt(1 - 4*x^2*(1+x)^2)) ) ).
(2) A(x) = G(x*A(x)^2) where G(x) = A(x/G(x)^2) is the g.f. of A104545 (Motzkin paths of length n having no consecutive (1,0) steps).
(3) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(4*k)] ).
(4) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [(1-x/A(x)^4)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k * A(x)^(4*k)] ).
a(n) = Sum_{k=0..floor(n/2)}((binomial(2*n+2*k+1,k)*binomial(2*n+2*k+1,n-2*k))/(2*n+2*k+1)). - Vladimir Kruchinin, Mar 11 2016

A200719 G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x^2*A(x)^5).

Original entry on oeis.org

1, 1, 3, 13, 64, 340, 1903, 11053, 65993, 402527, 2497439, 15712220, 100001459, 642719263, 4165537744, 27193644061, 178654643151, 1180282875483, 7836312619243, 52259258911091, 349902441457427, 2351240866736891, 15851508780927739, 107187240225220684, 726784821098903319
Offset: 0

Views

Author

Paul D. Hanna, Nov 21 2011

Keywords

Comments

More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 64*x^4 + 340*x^5 + 1903*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 32*x^3 + 163*x^4 + 886*x^5 + 5039*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 765*x^4 + 4481*x^5 + 26920*x^6 +...
A(x)^7 = 1 + 7*x + 42*x^2 + 252*x^3 + 1533*x^4 + 9457*x^5 + 59101*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^5 + x^3*A(x)^7.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^3)*x*A + (1 + 2^2*x*A^3 + x^2*A^6)*x^2*A^2/2 +
(1 + 3^2*x*A^3 + 3^2*x^2*A^6 + x^3*A^9)*x^3*A^3/3 +
(1 + 4^2*x*A^3 + 6^2*x^2*A^6 + 4^2*x^3*A^9 + x^4*A^12)*x^4*A^4/4 +
(1 + 5^2*x*A^3 + 10^2*x^2*A^6 + 10^2*x^3*A^9 + 5^2*x^4*A^12 + x^5*A^15)*x^5*A^5/5 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(p=1,q=3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}

Formula

G.f. A(x) satisfies:
(1) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(3*k)] ).
(2) A(x) = exp( Sum_{n>=1} x^n * A(x)^n/n * [(1-x/A(x)^3)^(2*n+1) * Sum_{k>=0} C(n+k,k)^2*x^k * A(x)^(3*k)] ).
Recurrence: 4232*(n-2)*(n-1)*n*(2*n - 3)*(2*n - 1)*(2*n + 1)*(108983978975*n^7 - 1828734495225*n^6 + 13017379495661*n^5 - 50928975062019*n^4 + 118201965098732*n^3 - 162617590602876*n^2 + 122676758610192*n - 39103265134080)*a(n) = 8*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(850837923857825*n^9 - 15127768128079400*n^8 + 116088908648008427*n^7 - 502364025369222635*n^6 + 1342887860190877280*n^5 - 2280899268898038065*n^4 + 2433907848768834828*n^3 - 1548429898790214180*n^2 + 521138603722292640*n - 68863424146977600)*a(n-1) - 30*(n-2)*(2*n - 3)*(155302170039375*n^11 - 3227155335853125*n^10 + 29807524885054600*n^9 - 161278340404759950*n^8 + 566950865855228019*n^7 - 1356848300481904461*n^6 + 2250482361655315470*n^5 - 2579665279074165840*n^4 + 1996011605601581864*n^3 - 988803599084885136*n^2 + 280851990522009984*n - 34444332223983360)*a(n-2) + 5*(7288303593953125*n^13 - 187891351713750000*n^12 + 2204843674914291875*n^11 - 15579013461781304250*n^10 + 73867718896175411475*n^9 - 247858726321141236540*n^8 + 604530296941440837821*n^7 - 1082990060568950070282*n^6 + 1421457900098213642392*n^5 - 1345695224728829837040*n^4 + 889319601933492222864*n^3 - 386196670582228097568*n^2 + 97916706472751405568*n - 10797892365692920320)*a(n-3) + 10*(n-3)*(2*n - 7)*(5*n - 18)*(5*n - 14)*(5*n - 12)*(5*n - 11)*(108983978975*n^7 - 1065846642400*n^6 + 4333636082786*n^5 - 9458655747964*n^4 + 11899609166891*n^3 - 8554104592084*n^2 + 3208950812340*n - 473478110640)*a(n-4). - Vaclav Kotesovec, Nov 17 2017
a(n) ~ s * sqrt((r*s*(r*s^3 - 1) - 3) / (7*Pi*(5*r*s*(1 + r*s^3) - 3))) / (2*n^(3/2)*r^n), where r = 0.1385102270697349252376651829944449360743895474888... and s = 1.450646440303399446510765649245639306003224666768... are real roots of the system of equations (1 + r*s^2)*(1 + r^2*s^5) = s, r*s*(2 + 5*r*s^3 + 7*r^2*s^5) = 1. - Vaclav Kotesovec, Nov 22 2017
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k+1,k) * binomial(2*n+k+1,n-2*k) / (2*n+k+1). - Seiichi Manyama, Jul 18 2023

A200074 G.f. satisfies A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)).

Original entry on oeis.org

1, 1, 3, 9, 30, 108, 406, 1577, 6280, 25499, 105169, 439388, 1855636, 7908909, 33975250, 146954693, 639460707, 2797384235, 12295494109, 54272825103, 240480529815, 1069257987503, 4769306203838, 21334400243252, 95687482105807, 430217846136134, 1938651904470374, 8754225470415889
Offset: 0

Views

Author

Paul D. Hanna, Nov 13 2011

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ),
then F(x) = (1 + x^r*F(x)^(p+1))*(1 + x^(r+s)*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 30*x^4 + 108*x^5 + 406*x^6 + 1577*x^7 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 24*x^3 + 87*x^4 + 330*x^5 + 1289*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 46*x^3 + 180*x^4 + 720*x^5 + 2928*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x) + x^3*A(x)^3.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (A + x)*x + (A^2 + 2^2*x*A + x^2)*x^2/2 +
(A^3 + 3^2*x*A^2 + 3^2*x^2*A + x^3)*x^3/3 +
(A^4 + 4^2*x*A^3 + 6^2*x^2*A^2 + 4^2*x^3*A + x^4)*x^4/4 +
(A^5 + 5^2*x*A^4 + 10^2*x^2*A^3 + 10^2*x^3*A^2 + 5^2*x^4*A + x^5)*x^5/5 +
(A^6 + 6^2*x*A^5 + 15^2*x^2*A^4 + 20^2*x^3*A^3 + 15^2*x^4*A^2 + 6^2*x^5*A + x^6)*x^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 19*x^3/3 + 77*x^4/4 + 331*x^5/5 + 1445*x^6/6 + 6392*x^7/7 + 28565*x^8/8 +...
		

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(RootOf(A=(1+x*A^2)*(1+x^2*A), A), x, n+1), x, n):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 16 2012
  • Mathematica
    m = 28; A[_] = 0;
    Do[A[x_] = (1 + x A[x]^2)(1 + x^2 A[x]) + O[x]^m, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Oct 02 2019 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1+x*A^2)*(1+x^2*A^1)+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j/A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x/A)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j/A^j)*x^m*A^m/m))); polcoeff(A, n, x)}

Formula

G.f. satisfies:
(1) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^(n-k)) * x^n/n ).
(2) A(x) = exp( Sum_{n>=1} (1-x/A(x))^(2*n+1)*(Sum_{k>=0} C(n+k,k)^2*x^k/A(x)^k) * x^n*A(x)^n/n ).
(3) A(x) = x / Series_Reversion( x*G(x) ) where G(x) is the g.f. of A199876.
(4) A(x) = G(x/A(x)) where G(x) = A(x*G(x)) is the g.f. of A199876.
Recurrence: (n+1)*(n+2)*(1241*n^4 - 10636*n^3 + 25417*n^2 - 7382*n - 17136)*a(n) = - 18*(n+1)*(443*n^3 - 3889*n^2 + 9734*n - 5712)*a(n-1) + 4*(6205*n^6 - 53180*n^5 + 115741*n^4 + 64762*n^3 - 370103*n^2 + 246727*n - 25704)*a(n-2) + 6*(2482*n^6 - 24995*n^5 + 76519*n^4 - 36347*n^3 - 185471*n^2 + 293092*n - 140400)*a(n-3) + 2*(4964*n^6 - 57436*n^5 + 228617*n^4 - 276802*n^3 - 361447*n^2 + 956696*n - 320496)*a(n-4) - 6*(2482*n^6 - 32441*n^5 + 140587*n^4 - 173153*n^3 - 266705*n^2 + 677518*n - 291840)*a(n-5) + 12*(n-4)*(2*n - 11)*(11*n^2 + 73*n - 748)*a(n-6) + 2*(n-5)*(2*n - 13)*(1241*n^4 - 5672*n^3 + 955*n^2 + 16508*n - 8496)*a(n-7). - Vaclav Kotesovec, Aug 18 2013
a(n) ~ c*d^n/n^(3/2), where d = 4.770539985405... is the root of the equation -4 + 12*d^2 - 8*d^3 - 12*d^4 - 20*d^5 + d^7 = 0 and c = 0.612892860188927397373456... - Vaclav Kotesovec, Aug 18 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-3*k+1,k) * binomial(2*n-3*k+1,n-2*k) / (2*n-3*k+1). - Seiichi Manyama, Jul 18 2023

A200075 G.f. satisfies A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)^3).

Original entry on oeis.org

1, 1, 3, 11, 45, 198, 914, 4367, 21414, 107155, 544987, 2808978, 14640073, 77025373, 408544815, 2182206259, 11727989593, 63373962690, 344109933186, 1876562458845, 10273572074493, 56443282489240, 311097732946200, 1719707775782826, 9531914043637385, 52963938340248863, 294966593345731623
Offset: 0

Views

Author

Paul D. Hanna, Nov 13 2011

Keywords

Comments

More generally, for fixed parameters p, q, r, and s, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^(n*r)*F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^(k*s)*F(x)^(k*q)] ),
then F(x) = (1 + x^r*F(x)^(p+1))*(1 + x^(r+s)*F(x)^(p+q+1)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 45*x^4 + 198*x^5 + 914*x^6 +...
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 28*x^3 + 121*x^4 + 552*x^5 + 2615*x^6 +...
A(x)^3 = 1 + 3*x + 12*x^2 + 52*x^3 + 237*x^4 + 1122*x^5 + 5463*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 125*x^3 + 630*x^4 + 3211*x^5 + 16545*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^3 + x^3*A(x)^5.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A)*x*A + (1 + 2^2*x*A + x^2*A^2)*x^2*A^2/2 +
(1 + 3^2*x*A + 3^2*x^2*A^2 + x^3*A^3)*x^3*A^3/3 +
(1 + 4^2*x*A + 6^2*x^2*A^2 + 4^2*x^3*A^3 + x^4*A^4)*x^4*A^4/4 +
(1 + 5^2*x*A + 10^2*x^2*A^2 + 10^2*x^3*A^3 + 5^2*x^4*A^4 + x^5*A^5)*x^5*A^5/5 +
(1 + 6^2*x*A + 15^2*x^2*A^2 + 20^2*x^3*A^3 + 15^2*x^4*A^4 + 6^2*x^5*A^5 + x^6*A^6)*x^6*A^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 25*x^3/3 + 129*x^4/4 + 686*x^5/5 + 3713*x^6/6 + 20350*x^7/7 +...
Given G(x) where 1+x*G(x) is the g.f. of A004148, then the coefficients in the powers of G(x) begin:
1: [(1), 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, ...];
2: [1,(2), 5, 12, 28, 66, 156, 370, 882, 2112, ...];
3: [1, 3,(9), 25, 66, 171, 437, 1107, 2790, 7009, ...];
4: [1, 4, 14,(44), 129, 364, 1000, 2696, 7172, 18892, ...];
5: [1, 5, 20, 70,(225), 686, 2015, 5760, 16135, 44500, ...];
6: [1, 6, 27, 104, 363,(1188), 3713, 11214, 32994, 95106, ...];
7: [1, 7, 35, 147, 553, 1932,(6398), 20350, 62734, 188650, ...];
8: [1, 8, 44, 200, 806, 2992, 10460,(34936), 112585, 352560, ...];
9: [1, 9, 54, 264, 1134, 4455, 16389, 57330,(192726), 627406, ...]; ...;
the coefficients in parenthesis form the initial terms of this sequence:
[1/1, 2/2, 9/3, 44/4, 225/5, 1188/6, 6398/7, 34936/8, 192726/9, ...].
The coefficients in the logarithm of the g.f. is also a diagonal in the above table.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[1/x*InverseSeries[Series[x*(1-x-x^2 + Sqrt[(1+x+x^2)*(1-3*x+x^2)])/2,{x,0,20}],x],x] (* Vaclav Kotesovec, Sep 19 2013 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1+x*A^2)*(1+x^2*A^3)+x*O(x^n));polcoeff(A,n)}
    
  • PARI
    {a(n)=polcoeff(1/x*serreverse(x*(1-x-x^2 + sqrt((1+x+x^2)*(1-3*x+x^2)+x*O(x^n)))/2),n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j*A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x*A)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*A^j)*x^m*A^m/m))); polcoeff(A, n, x)}

Formula

G.f.: (1/x)*Series_Reversion( x*(1-x-x^2 + sqrt((1+x+x^2)*(1-3*x+x^2)))/2 ).
a(n) = [x^n] G(x)^(n+1)/(n+1), where 1+x*G(x) is the g.f. of A004148.
G.f. A(x) satisfies:
(1) A(x) = (1/x)*Series_Reversion( x/G(x) ) where 1+x*G(x) is the g.f. of A004148.
(2) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) and 1+x*G(x) is the g.f. of A004148.
(3) A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^k) * x^n*A(x)^n/n ).
(4) A(x) = exp( Sum_{n>=1} (1-x*A(x))^(2*n+1)*(Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^k) * x^n*A(x)^n/n ).
Recurrence: 8*n*(2*n+1)*(4*n+1)*(4*n+3)*(1557671*n^7 - 18939961*n^6 + 94817789*n^5 - 252067387*n^4 + 381880748*n^3 - 327052012*n^2 + 145198992*n - 25583040)*a(n) = (2026529971*n^11 - 24640889261*n^10 + 122927623620*n^9 - 322351865586*n^8 + 467303512311*n^7 - 343677276405*n^6 + 61590777290*n^5 + 76066203476*n^4 - 45605627832*n^3 + 4625651136*n^2 + 1916801280*n - 338688000)*a(n-1) + 2*(800642894*n^11 - 10936104295*n^10 + 62803409541*n^9 - 196202081616*n^8 + 357730085364*n^7 - 370711524567*n^6 + 174415015309*n^5 + 25877389846*n^4 - 63266190708*n^3 + 19055552472*n^2 + 1313789760*n - 861840000)*a(n-2) + 6*(308418858*n^11 - 4675368852*n^10 + 30103912361*n^9 - 106665982366*n^8 + 223860428776*n^7 - 274000455628*n^6 + 166116940489*n^5 - 2432493994*n^4 - 54297743044*n^3 + 22033617000*n^2 + 936446400*n - 1315440000)*a(n-3) + 6*(n-2)*(2*n-7)*(3*n-10)*(3*n-8)*(1557671*n^7 - 8036264*n^6 + 13889114*n^5 - 7559372*n^4 - 2491645*n^3 + 2975476*n^2 - 179460*n - 187200)*a(n-4). - Vaclav Kotesovec, Sep 19 2013
a(n) ~ c*d^n/(sqrt(Pi)*n^(3/2)), where d = 1301/1024 + 1/(1024*sqrt(3/(7183147 - (2002819072*2^(2/3))/(3725055779 + 42057117*sqrt(16305))^(1/3) + 1024*(7450111558 + 84114234*sqrt(16305))^(1/3)))) + (1/2)*sqrt(7183147/393216 - (3725055779 + 42057117*sqrt(16305))^(1/3)/(384*2^(2/3)) + 977939/(192*(7450111558 + 84114234*sqrt(16305))^(1/3)) + (1/131072)*(4194454317*sqrt(3/(7183147 - (2002819072*2^(2/3))/(3725055779 + 42057117*sqrt(16305))^(1/3) + 1024*(7450111558 + 84114234*sqrt(16305))^(1/3))))) = 5.89828930084513611... is the root of the equation -108 - 1188*d - 1028*d^2 - 1301*d^3 + 256*d^4 = 0 and c = 0.656947859044624009263362998790812821830934... - Vaclav Kotesovec, Sep 19 2013
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n-k+1,k) * binomial(2*n-k+1,n-2*k) / (2*n-k+1). - Seiichi Manyama, Jul 18 2023

A210736 Expansion of (1 + sqrt( (1 + 2*x) / (1 - 2*x))) / 2 in powers of x.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, 92378, 184756, 352716, 705432, 1352078, 2704156, 5200300, 10400600, 20058300, 40116600, 77558760, 155117520, 300540195, 601080390, 1166803110, 2333606220, 4537567650
Offset: 0

Views

Author

Michael Somos, May 10 2012

Keywords

Comments

Hankel transform is period 4 sequence [ 1, 0, -1, 0, ...] A056594 and the Hankel transform of sequence omitting a(0) is the all 1s sequence A000012. This is the unique sequence with that property.
Series reversion of x*A(x) apparently yields x*A036765(-x). - R. J. Mathar, Sep 24 2012
a(n) is the number of length n words on {-1,1} such that the sum of any of its prefixes is always positive. Cf. A001405 where the sum of all prefixes is nonnegative. - Geoffrey Critzer, Jul 08 2013

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 20*x^7 + 35*x^8 + 70*x^9 + ...
		

Crossrefs

Essentially the same as A001405.

Programs

  • Mathematica
    nn=36; d=(1-(1-4x^2)^(1/2))/(2x^2);CoefficientList[Series[1/(1-x d),{x,0,nn}],x] (* Geoffrey Critzer, Jul 08 2013 *)
    CoefficientList[Series[2 x / (-1 + 2 x + Sqrt[1 - 4 x^2]), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, binomial( n - 1, (n - 1)\2))};
    
  • PARI
    {a(n) = polcoeff( (1 + sqrt( (1 + 2*x) / (1 - 2*x) + x * O(x^n))) / 2, n)};

Formula

G.f.: 2 * x / (-1 + 2*x + sqrt(1 - 4*x^2)).
G.f. A(x) satisfies A(x) = A(x)^2 - x / (1 - 2*x).
G.f. A(x) satisfies A( x / (1 + x^2) ) = 1 / (1 - x).
G.f. A(x) satisfies A(1/3) = (1 + sqrt(5))/2.
G.f. A(x) = 1 + x / (1 - 2*x + x / A(x)).
G.f. A(x) = 1 + x / (1 - x / (1 - x / (1 + x / A(x)))).
G.f. A(x) = 1 + x * A001405(x). a(n+1) = A001405(n).
Convolution inverse is A210628. Partial sums is A072100.
Binomial transform with offset 1 is A211278 with offset 1. a(n+2) * a(n) - a(n+1)^2 = A138350(n-1).
a(n) = (-1)^floor(n/2)*hypergeom2F1([1-n, -n],[1],-1). - Peter Luschny, Sep 01 2012
D-finite with recurrence: n*a(n) -2*a(n-1) +4*(2-n)*a(n-2)=0. - R. J. Mathar, Sep 14 2012
G.f. A(x) = 1 / (1 - x / (1 - x^2 / (1 - x^2 / (1 - x^2 / ...)))). - Michael Somos, Jan 02 2013
G.f.: 1/(1 - x*C(x)) where C(x) is the o.g.f. for A126120. - Geoffrey Critzer, Jul 08 2013
a(n) ~ 2^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Feb 01 2014
G.f.: A(x) = 1 - x/(- 1 + x/A(-x)). - Arkadiusz Wesolowski, Feb 28 2014
From Tom Copeland, Nov 07 2014: (Start)
Setting a(0)=0 here, we have a signed version in A126930 and
O.g.f. G(x)=[-1+sqrt(1+4*x/(1-2x))]/2 = x + x^2 + 2 x^3 + ... = -C[-P(P(x,-1),-1)]= -C[-P(x,-2)] where C(x)= [1-sqrt(1-4*x)]/2= x + x^2 + 2 x^3 + ... = A000108(x) with inverse Cinv(x)=x*(1-x), and P(x,t)= x/(1 + t*x) with inverse P(x,-t).
These types of arrays are from linear fractional transformations of C(x). See A091867.
Ginv(x) = P[-Cinv(-x),2] = x*(1+x)/(1+2*x*(1-x))= (x+x^2)/(1+2(x+x^2)) (see A146559). (End)

A186241 G.f. satisfies A(x) = 1 + x*A(x)^2 + x^2*A(x)^4 + x^3*A(x)^6.

Original entry on oeis.org

1, 1, 3, 12, 54, 262, 1337, 7072, 38426, 213197, 1202795, 6879160, 39794416, 232429030, 1368806610, 8118934656, 48458809586, 290832756606, 1754059333738, 10625545472716, 64620970743082, 394409682103262, 2415084675723048, 14832185219521152, 91339478577683664
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 15 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 12*x^3 + 54*x^4 + 262*x^5 + 1337*x^6 +...
where A(x) = (1 + x*A(x)^2)*(1 + x^2*A(x)^4).
Related expansions:
A(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 141*x^4 + 704*x^5 + 3666*x^6 +...
A(x)^4 = 1 + 4*x + 18*x^2 + 88*x^3 + 451*x^4 + 2392*x^5 + 13022*x^6 +...
A(x)^6 = 1 + 6*x + 33*x^2 + 182*x^3 + 1014*x^4 + 5718*x^5 + 32623*x^6 +...
where A(x) = 1 + x*A(x)^2 + x^2*A(x)^4 + x^3*A(x)^6.
From _Paul D. Hanna_, Nov 11 2011: (Start)
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^2)*x*A + (1 + 2^2*x*A^2 + x^2*A^4)*x^2*A^2/2 +
(1 + 3^2*x*A^2 + 3^2*x^2*A^4 + x^3*A^6)*x^3*A^3/3 +
(1 + 4^2*x*A^2 + 6^2*x^2*A^4 + 4^2*x^3*A^6 + x^4*A^8)*x^4*A^4/4 +
(1 + 5^2*x*A^2 + 10^2*x^2*A^4 + 10^2*x^3*A^6 + 5^2*x^4*A^8 + x^5*A^10)*x^5*A^5/5 + ...
which involves squares of binomial coefficients. (End)
		

Crossrefs

Programs

  • Maple
    F:= proc(n) if n::even then
      simplify((1/2)*hypergeom([-(1/2)*n, -2*n-1, -(1/2)*n+1/2], [(1/2)*n+1, 3/2+(1/2)*n], -1)*(2*n+2)!/((2*n+1)*((n+1)!)^2))
      else
      simplify((1/2)*hypergeom([-(1/2)*n, -2*n-1, -(1/2)*n+1/2], [(1/2)*n+1, 3/2+(1/2)*n], -1)*(2*n+2)!/((2*n+1)*((n+1)!)^2))
      fi
    end proc:
    map(F, [$0..30]); # Robert Israel, Jun 22 2015
  • Mathematica
    a[n_] := 1/(2n + 1) Sum[Binomial[2n + 1, k] Binomial[2n + 1, n - 2k], {k, 0, n/2}];
    (* or: *)
    a[n_] := (Binomial[2n + 1, n] HypergeometricPFQ[{-2n - 1, 1/2 - n/2, -n/2}, {n/2 + 1, n/2 + 3/2}, -1])/(2n + 1);
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 17 2017 *)
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1+x*A^2)*(1+x^2*A^4)+x*O(x^n));polcoeff(A,n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=polcoeff(sqrt((1/x)*serreverse(x/(1 + x + x^2 + x^3 +x*O(x^n))^2)), n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=polcoeff( (1 + x + x^2 + x^3+x*O(x^n))^(2*n+1)/(2*n+1), n)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (x*A+x*O(x^n))^m/m*sum(j=0, m, binomial(m, j)^2*x^j*A^(2*j))))); polcoeff(A, n, x)} /* Paul D. Hanna */
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n,x^m*A^m/m*(1-x*A^2)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*A^(2*j))))); polcoeff(A, n, x)} /* Paul D. Hanna */

Formula

a(n) = (1/(2*n-1))*Sum_{j=0..2*n-1} binomial(2*n-1,j)*Sum_{i=j..n+j-1} binomial(j,i-j)*binomial(2*n-j-1,3*j-3*n-i+1), n>0.
From Paul D. Hanna, Nov 11 2011: (Start)
G.f. A(x) satisfies:
(1) A(x) = sqrt( (1/x)*Series_Reversion( x/(1 + x + x^2 + x^3)^2 ) ).
(2) A( x/(1 + x + x^2 + x^3)^2 ) = 1 + x + x^2 + x^3.
(3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) = g.f. of A036765 (number of rooted trees with a degree constraint).
(4) a(n) = [x^n] (1 + x + x^2 + x^3)^(2*n+1) / (2*n+1).
(5) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * [Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^(2*k)] ).
(6) A(x) = exp( Sum_{n>=1} x^n*A(x)^n/n * [(1-x*A(x)^2)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^(2*k)] ).
(End)
From Peter Bala, Jun 21 2015: (Start)
a(n) = 1/(2*n + 1)*Sum_{k = 0..floor(n/2)} binomial(2*n + 1,k)*binomial(2*n + 1,n - 2*k).
More generally, the coefficient of x^n in A(x)^r equals r/(2*n + r)*Sum_{k = 0..floor(n/2)} binomial(2*n + r,k)*binomial(2*n + r,n - 2*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} 1/2*b(n)*x^n/n), where b(n) = Sum_{k = 0..floor(n/2)} binomial(2*n,k)*binomial(2*n,n - 2*k). Cf. A036765, A198951, A200731. (End)
Recurrence: 5*n*(5*n - 1)*(5*n + 1)*(5*n + 2)*(5*n + 3)*(13144*n^4 - 57784*n^3 + 90149*n^2 - 59354*n + 13980)*a(n) = 8*(2*n - 1)*(16259128*n^8 - 71478808*n^7 + 108653137*n^6 - 60530902*n^5 - 2811173*n^4 + 12694433*n^3 - 2398482*n^2 - 352503*n + 78570)*a(n-1) + 128*(n-1)*(2*n - 3)*(2*n - 1)*(52576*n^6 - 178560*n^5 + 136156*n^4 + 22938*n^3 - 16067*n^2 - 3138*n - 405)*a(n-2) + 2048*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(13144*n^4 - 5208*n^3 - 4339*n^2 + 168*n + 135)*a(n-3). - Vaclav Kotesovec, Nov 17 2017
A(x^2) = (1/x) * series reversion of x/(1 + x^2 + x^4 + x^6). - Peter Bala, Jul 27 2023

A291534 Expansion of the series reversion of x/((1 + x)*(1 - x^2)).

Original entry on oeis.org

1, 1, 0, -3, -7, -4, 24, 85, 99, -215, -1196, -2100, 1420, 17512, 42160, 9477, -252073, -815965, -736456, 3365813, 15248793, 22861712, -37036000, -273657748, -575046252, 180950476, 4658415696, 13042693000, 6717278152, -73400374512, -275797704864, -321427878811, 1012425395135
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 25 2017

Keywords

Comments

Reversion of g.f. for the canonical enumeration of integers (A001057).

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x/((1 + x) (1 - x^2)), {x, 0, 33}], x], x]]
    Table[HypergeometricPFQ[{(1 - n)/2, 1 - n/2, -n}, {1, 3/2}, 1], {n, 1, 33}] (* Vladimir Reshetnikov, Oct 15 2018 *)
  • PARI
    a(n) = sum(k=0, n-1, (-1)^k*binomial(n, k)*binomial(2*n, n-1-k))/n; \\ Seiichi Manyama, Aug 05 2023

Formula

G.f. A(x) satisfies: A(x)/((1 + A(x))*(1 - A(x)^2)) = x.
a(n) = hypergeom([(1 - n)/2, 1 - n/2, -n], [1, 3/2], 1). - Vladimir Reshetnikov, Oct 15 2018
From Vladimir Reshetnikov, Oct 18 2018: (Start)
G.f.: 2^(1/3)*(6 - 8*x - 2^(1/3)*t^2)/(6*sqrt(x)*t), where t = (3*sqrt(12 - 39*x + 96*x^2) - (9 + 16*x)*sqrt(x))^(1/3).
D-finite with recurrence: 64*n*(n + 1)*(2*n + 1)*a(n) - 4*(n + 1)*(37*n^2 + 134*n + 120)*a(n + 1) + (n + 2)*(55*n^2 + 235*n + 240)*a(n + 2) - 2*(6*n + 21)*(n + 2)*(n + 3)*a(n + 3) = 0. (End)
a(n) = (1/n) * Sum_{k=0..n-1} (-1)^k * binomial(n,k) * binomial(2*n,n-1-k). - Seiichi Manyama, Aug 05 2023
From Seiichi Manyama, Aug 11 2023: (Start)
a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(2*n+k+1,n) / (2*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} (-2)^k * binomial(n,k) * binomial(3*n-k,n-1-k). (End)

A036766 Number of ordered rooted trees with n non-root nodes and all outdegrees <= four.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 125, 393, 1265, 4147, 13798, 46476, 158170, 543050, 1878670, 6542330, 22915999, 80682987, 285378270, 1013564805, 3613262795, 12924536005, 46373266470, 166856922125, 601928551824, 2176616383346, 7888184659826, 28645799759632, 104224861693855
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of Dyck n-paths that avoid UUUUU=(U^5). For example, a(5)=41 counts all 42 Dyck 5-paths except (U^5)(D^5). - David Callan, Sep 25 2006
Number of n-leaf binary trees that do not contain (()(()(()(()(()()))))) as a subtree. - Eric Rowland, Jun 17 2009
a(n) is the number of ordered unlabeled rooted trees on n+1 nodes where each node has no more than 4 children. - Geoffrey Critzer, Jan 05 2013

Crossrefs

The sequence of sequences A000007 (0^n), A000012 (1's), A001006 (Motzkin), A036765, A036766, ... tends to A000108 (Catalan).
Column k=4 of A288942.

Programs

  • Maple
    r := 4; [ seq((1/n)*add( (-1)^j*binomial(n,j)*binomial(2*n-2-j*(r+1), n-1), j=0..floor((n-1)/(r+1))), n=1..30) ];
  • Mathematica
    nn=20;f[x_]:=Sum[a[n]x^n,{n,0,nn}];sol=SolveAlways[Series[0==f[x]-x -x f[x]-x f[x]^2-x f[x]^3-x f[x]^4,{x,0,nn}],x];Table[a[n],{n,0,nn}]/.sol  (* Geoffrey Critzer, Jan 05 2013 *)
    Table[1/(n+1)*Sum[(-1)^j*Binomial[n+1,j]*Binomial[2*n-5*j,n],{j,0,Floor[n/5]}],{n,0,20}] (* Vaclav Kotesovec, Mar 13 2014 *)
    b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1, Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] + Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
    a[n_] := b[0, n, 4];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/polcyclo(5)+O(x^(n+2))),n+1)) /* Ralf Stephan */

Formula

G.f.: A(x) satisfies A(x) = 1+x*A(x)+x^2*A(x)^2+x^3*A(x)^3+x^4*A(x)^4. - Vladimir Kruchinin, Feb 22 2011
a(n) ~ sqrt(s/(1 + 3*r*s + 6*r^2*s^2)) / (2*n^(3/2)*sqrt(Pi)*r^(n+1)), where r = 0.2607944621478111633... and s = 2.176953284456253116... are roots of the system of equations r + 2*r^2*s + 3*r^3*s^2 + 4*r^4*s^3 = 1, 1 + r*s + r^2*s^2 + r^3*s^3 + r^4*s^4 = s. - Vaclav Kotesovec, Mar 13 2014
Conjecture: -3*(3*n+2)*(133*n-347)*(3*n+4)*(n+1)*a(n) +(111457*n^4-364730*n^3+228995*n^2+19310*n-33312)*a(n-1) +5*(-68503*n^4+34661
8*n^3-590627*n^2+397748*n-90564)*a(n-2) -25*(n-2)*(1933*n^3-9435*n^2+14354*n-7518)*a(n-3) -125*(n-2)*(n-3)*(1333*n^2-4384*n+2718)*
a(n-4) -625*(733*n-400)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Aug 04 2015

Extensions

Name clarified by Andrew Howroyd, Dec 04 2017

A159772 Number of n-leaf binary trees that do not contain (()((((()())())())())) as a subtree.

Original entry on oeis.org

1, 1, 2, 5, 14, 41, 124, 384, 1210, 3865, 12482, 40677, 133572, 441468, 1467296, 4900760, 16439370, 55357305, 187050302, 633998079, 2154950454, 7343407521, 25082709012, 85858848820, 294480653064, 1011871145116, 3482837144984, 12006861566684, 41454180382688
Offset: 1

Views

Author

Eric Rowland, Apr 23 2009

Keywords

Comments

By 'binary tree' we mean a rooted, ordered tree in which each vertex has either 0 or 2 children.
a(n) is also the number of Dyck words of semilength n-1 with no DUUUU.
Also, number of ordered rooted trees with n nodes and all non-root nodes having outdegrees < 4. - Andrew Howroyd, Dec 04 2017

Crossrefs

Column k=4 of A295679.

Programs

  • Mathematica
    terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]];
    col[4] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
  • Maxima
    a(n):=if n=1 then 1 else sum(k*sum(binomial(n-1,j)*sum(binomial(j,i-j)*binomial(n-j-1,3*j-n-k-i+1),i,j,n-k+j-1),j,0,n-1),k,1,n-1)/(n-1); /* Vladimir Kruchinin, Oct 23 2011 */
  • PARI
    Vec(1/(1-serreverse(x*(1-x)/(1-x^4) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
    

Formula

G.f. f(x) satisfies (1 - 4 x) f(x)^3 + (6 x - 1) x f(x)^2 - 4 x^3 f(x) + x^4 = 0.
a(n) = sum(k=1..n-1, k*sum(j=0..n-1, binomial(n-1,j)*sum(i=j..n-k+j-1, binomial(j,i-j)*binomial(n-j-1,3*j-n-k-i+1))))/(n-1), n>1. a(0)=0, a(1)=1. - Vladimir Kruchinin, Oct 23 2011
Conjecture: 2*(n-1)*(2*n-3)*a(n) +(-43*n^2+172*n-177)*a(n-1) +4*(44*n^2-266*n+411)*a(n-2) +8*(-43*n^2+358*n-741)*a(n-3) +96*(3*n^2-29*n+69)*a(n-4) -128*(n-4)*(n-6)*a(n-5) +512*(n-6)*(n-7)*a(n-6)=0. - R. J. Mathar, May 30 2014
G.f.: x/(1-x*G(x)) where G(x) is g.f. of A036765. - Andrew Howroyd, Dec 04 2017
From Vaclav Kotesovec, Dec 05 2017: (Start)
Recurrence (of order 4): 2*(n-1)*(2*n - 3)*(13*n^2 - 75*n + 104)*a(n) = 3*(117*n^4 - 1039*n^3 + 3315*n^2 - 4513*n + 2216)*a(n-1) - 12*(39*n^4 - 368*n^3 + 1268*n^2 - 1893*n + 1032)*a(n-2) - 16*(n-4)*(13*n^3 - 75*n^2 + 122*n - 54)*a(n-3) - 64*(n-5)*(n-4)*(13*n^2 - 49*n + 42)*a(n-4).
a(n) ~ sqrt(r*s*(r - s + 2*s^2) / (2*Pi*(r - 6*r^2 - 3*s + 12*r*s))) / (n^(3/2) * r^n), where r = 0.2769531794372340984240353119411920830379502290822... and s = 0.8081460429543529393193017440354060980373344931954... are real roots of the system of equations r^4 + r*(-1 + 6*r)*s^2 + (1 - 4*r)*s^3 = 4*r^3*s, s*(12*r^2 + 3*s - 2*r*(1 + 6*s)) = 4*r^3. (End)
a(n+1) = Sum_{k=0..n} A064580(n,k). - Georg Fischer, Jul 20 2023
Previous Showing 11-20 of 48 results. Next